1
|
Groff L, Williams A, Shah I, Patlewicz G. MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators. Chem Res Toxicol 2024; 37:685-697. [PMID: 38598715 PMCID: PMC11325951 DOI: 10.1021/acs.chemrestox.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Xenobiotic metabolism is a key consideration in evaluating the hazards and risks posed by environmental chemicals. A number of software tools exist that are capable of simulating metabolites, but each reports its predictions in a different format and with varying levels of detail. This makes comparing the performance and coverage of the tools a practical challenge. To address this shortcoming, we developed a metabolic simulation framework called MetSim, which comprises three main components. A graph-based schema was developed to allow metabolism information to be harmonized. The schema was implemented in MongoDB to store and retrieve metabolic graphs for subsequent analysis. MetSim currently includes an application programming interface for four metabolic simulators: BioTransformer, the OECD Toolbox, EPA's chemical transformation simulator (CTS), and tissue metabolism simulator (TIMES). Lastly, MetSim provides functions to help evaluate simulator performance for specific data sets. In this study, a set of 112 drugs with 432 reported metabolites were compiled, and predictions were made using the 4 simulators. Fifty-nine of the 112 drugs were taken from the Small Molecule Pathway Database, with the remainder sourced from the literature. The human models within BioTransformer and CTS (Phase I only) and the rat models within TIMES and the OECD Toolbox (Phase I only) were used to make predictions for the chemicals in the data set. The recall and precision (recall, precision) ranked in order of highest recall for each individual tool were CTS (0.54, 0.017), BioTransformer (0.50, 0.008), Toolbox in vitro (0.40, 0.144), TIMES in vivo (0.40, 0.133), Toolbox in vivo (0.40, 0.118), and TIMES in vitro (0.39, 0.128). Combining all of the model predictions together increased the overall recall (0.73, 0.008). MetSim enabled insights into the performance and coverage of in silico metabolic simulators to be more efficiently derived, which in turn should aid future efforts to evaluate other data sets.
Collapse
Affiliation(s)
- Louis Groff
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony Williams
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
2
|
Furuhama A, Kitazawa A, Yao J, Matos Dos Santos CE, Rathman J, Yang C, Ribeiro JV, Cross K, Myatt G, Raitano G, Benfenati E, Jeliazkova N, Saiakhov R, Chakravarti S, Foster RS, Bossa C, Battistelli CL, Benigni R, Sawada T, Wasada H, Hashimoto T, Wu M, Barzilay R, Daga PR, Clark RD, Mestres J, Montero A, Gregori-Puigjané E, Petkov P, Ivanova H, Mekenyan O, Matthews S, Guan D, Spicer J, Lui R, Uesawa Y, Kurosaki K, Matsuzaka Y, Sasaki S, Cronin MTD, Belfield SJ, Firman JW, Spînu N, Qiu M, Keca JM, Gini G, Li T, Tong W, Hong H, Liu Z, Igarashi Y, Yamada H, Sugiyama KI, Honma M. Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:983-1001. [PMID: 38047445 DOI: 10.1080/1062936x.2023.2284902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Quantitative structure-activity relationship (QSAR) models are powerful in silico tools for predicting the mutagenicity of unstable compounds, impurities and metabolites that are difficult to examine using the Ames test. Ideally, Ames/QSAR models for regulatory use should demonstrate high sensitivity, low false-negative rate and wide coverage of chemical space. To promote superior model development, the Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR International Challenge Project (2020-2022) as a successor to the First Project (2014-2017), with 21 teams from 11 countries participating. The DGM/NIHS provided a curated training dataset of approximately 12,000 chemicals and a trial dataset of approximately 1,600 chemicals, and each participating team predicted the Ames mutagenicity of each trial chemical using various Ames/QSAR models. The DGM/NIHS then provided the Ames test results for trial chemicals to assist in model improvement. Although overall model performance on the Second Project was not superior to that on the First, models from the eight teams participating in both projects achieved higher sensitivity than models from teams participating in only the Second Project. Thus, these evaluations have facilitated the development of QSAR models.
Collapse
Affiliation(s)
- A Furuhama
- Division of Genetics and Mutagenesis (DGM), National Institute of Health Sciences (NIHS), Kawasaki, Japan
| | - A Kitazawa
- Division of Genetics and Mutagenesis (DGM), National Institute of Health Sciences (NIHS), Kawasaki, Japan
| | - J Yao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (SIOC, CAS), Shanghai, China
| | - C E Matos Dos Santos
- Department of Computational Toxicology and In Silico Innovations, Altox Ltd, São Paulo-SP, Brazil
| | - J Rathman
- MN-AM, Nuremberg, Germany/Columbus, OH, USA
| | - C Yang
- MN-AM, Nuremberg, Germany/Columbus, OH, USA
| | | | - K Cross
- In Silico Department, Instem, Conshohocken, PA, USA
| | - G Myatt
- In Silico Department, Instem, Conshohocken, PA, USA
| | - G Raitano
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS (IRFMN), Milano, Italy
| | - E Benfenati
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS (IRFMN), Milano, Italy
| | | | | | | | | | - C Bossa
- Environment and Health Department, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - C Laura Battistelli
- Environment and Health Department, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - R Benigni
- Environment and Health Department, Istituto Superiore di Sanità (ISS), Rome, Italy
- Alpha-PreTox, Rome, Italy
| | - T Sawada
- Faculty of Regional Studies, Gifu University, Gifu, Japan
- xenoBiotic Inc, Gifu, Japan
| | - H Wasada
- Faculty of Regional Studies, Gifu University, Gifu, Japan
| | - T Hashimoto
- Faculty of Regional Studies, Gifu University, Gifu, Japan
| | - M Wu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - R Barzilay
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P R Daga
- Simulations Plus, Lancaster, CA, USA
| | - R D Clark
- Simulations Plus, Lancaster, CA, USA
| | | | | | | | - P Petkov
- LMC - Bourgas University, Bourgas, Bulgaria
| | - H Ivanova
- LMC - Bourgas University, Bourgas, Bulgaria
| | - O Mekenyan
- LMC - Bourgas University, Bourgas, Bulgaria
| | - S Matthews
- Computational Pharmacology & Toxicology Laboratory, Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - D Guan
- Computational Pharmacology & Toxicology Laboratory, Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - J Spicer
- Computational Pharmacology & Toxicology Laboratory, Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - R Lui
- Computational Pharmacology & Toxicology Laboratory, Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Y Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - K Kurosaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Y Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - S Sasaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - S J Belfield
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - J W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - N Spînu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M Qiu
- Evergreen AI, Inc, Toronto, Canada
| | - J M Keca
- Evergreen AI, Inc, Toronto, Canada
| | - G Gini
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - T Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (NCTR/FDA), Jefferson, AR, USA
| | - W Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (NCTR/FDA), Jefferson, AR, USA
| | - H Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (NCTR/FDA), Jefferson, AR, USA
| | - Z Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (NCTR/FDA), Jefferson, AR, USA
- Integrative Toxicology, Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Y Igarashi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - H Yamada
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - K-I Sugiyama
- Division of Genetics and Mutagenesis (DGM), National Institute of Health Sciences (NIHS), Kawasaki, Japan
| | - M Honma
- Division of Genetics and Mutagenesis (DGM), National Institute of Health Sciences (NIHS), Kawasaki, Japan
| |
Collapse
|