1
|
Wenzek F, Biallas A, Müller S. Nicotinamide Riboside: What It Takes to Incorporate It into RNA. Molecules 2024; 29:3788. [PMID: 39202867 PMCID: PMC11357040 DOI: 10.3390/molecules29163788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Nicotinamide is an important functional compound and, in the form of nicotinamide adenine dinucleotide (NAD), is used as a co-factor by protein-based enzymes to catalyze redox reactions. In the context of the RNA world hypothesis, it is therefore reasonable to assume that ancestral ribozymes could have used co-factors such as NAD or its simpler analog nicotinamide riboside (NAR) to catalyze redox reactions. The only described example of such an engineered ribozyme uses a nicotinamide moiety bound to the ribozyme through non-covalent interactions. Covalent attachment of NAR to RNA could be advantageous, but the demonstration of such scenarios to date has suffered from the chemical instability of both NAR and its reduced form, NARH, making their use in oligonucleotide synthesis less straightforward. Here, we review the literature describing the chemical properties of the oxidized and reduced species of NAR, their synthesis, and previous attempts to incorporate either species into RNA. We discuss how to overcome the stability problem and succeed in generating RNA structures incorporating NAR.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; (F.W.); (A.B.)
| |
Collapse
|
2
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
3
|
Biţă A, Scorei IR, Ciocîlteu MV, Nicolaescu OE, Pîrvu AS, Bejenaru LE, Rău G, Bejenaru C, Radu A, Neamţu J, Mogoşanu GD, Benner SA. Nicotinamide Riboside, a Promising Vitamin B 3 Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules 2023; 28:6078. [PMID: 37630330 PMCID: PMC10459282 DOI: 10.3390/molecules28166078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Many studies have suggested that the oxidized form of nicotinamide adenine dinucleotide (NAD+) is involved in an extensive spectrum of human pathologies, including neurodegenerative disorders, cardiomyopathy, obesity, and diabetes. Further, healthy aging and longevity appear to be closely related to NAD+ and its related metabolites, including nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). As a dietary supplement, NR appears to be well tolerated, having better pharmacodynamics and greater potency. Unfortunately, NR is a reactive molecule, often unstable during its manufacturing, transport, and storage. Recently, work related to prebiotic chemistry discovered that NR borate is considerably more stable than NR itself. However, immediately upon consumption, the borate dissociates from the NR borate and is lost in the body through dilution and binding to other species, notably carbohydrates such as fructose and glucose. The NR left behind is expected to behave pharmacologically in ways identical to NR itself. This review provides a comprehensive summary (through Q1 of 2023) of the literature that makes the case for the consumption of NR as a dietary supplement. It then summarizes the challenges of delivering quality NR to consumers using standard synthesis, manufacture, shipping, and storage approaches. It concludes by outlining the advantages of NR borate in these processes.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Oana Elena Nicolaescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA;
| |
Collapse
|
4
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
5
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients 2022; 14:nu14153130. [PMID: 35956307 PMCID: PMC9370700 DOI: 10.3390/nu14153130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized H2O (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased Clostridium and NRCl treatment resulted in increased populations of Bifidobacterium, Lactobacillus, and E. coli. Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.
Collapse
|
6
|
A Combination of Nicotinamide and D-Ribose (RiaGev) Is Safe and Effective to Increase NAD + Metabolome in Healthy Middle-Aged Adults: A Randomized, Triple-Blind, Placebo-Controlled, Cross-Over Pilot Clinical Trial. Nutrients 2022; 14:nu14112219. [PMID: 35684021 PMCID: PMC9183138 DOI: 10.3390/nu14112219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor required for proper functioning of all cells and its decline is correlated with advancing age and disease. This randomized, triple-blind, placebo-controlled, crossover pilot study assessed the efficacy and safety of a combination of nicotinamide with D-ribose (RiaGev) for NAD metabolome enhancement and related benefits in healthy middle-aged adults. Supplementing with 1520 mg RiaGev twice daily for 7 days significantly increased the NAD+ metabolome in blood, especially NADP+ by 27% compared to the placebo group (p = 0.033) and over the baseline (p = 0.007). Increases in glutathione and high energy phosphates were also observed in the blood. Seven-day supplementation with RiaGev significantly (p = 0.013) reduced overall blood glucose without significant changes in insulin secretion (p = 0.796), suggesting an improved insulin sensitivity and glucose tolerance. The waking salivary cortisol of the subjects steadily and significantly decreased (p = 0.026) in the RiaGev group in contrast to the placebo. Subjects in the RiaGev group showed less fatigue, improved mental concentration and motivation over the baseline (p = 0.015, 0.018, and 0.012, respectively) as observed through the Checklist Individual Strength (CIS) questionnaire. There were no clinically relevant adverse events, or alterations in hematology, electrolytes, liver, and kidney markers pre- and post-supplementation. RiaGev appears to be safe and efficacious in increasing NAD+ metabolome in healthy middle-aged adults, as shown by this study.
Collapse
|
7
|
Zarei A, Khazdooz L, Madarshahian S, Enayati M, Mosleh I, Lin T, Yan B, Ufheil G, Wooster TJ, Abbaspourrad A. Synthesis, Stability, and Bioavailability of Nicotinamide Riboside Trioleate Chloride. Nutrients 2021; 14:113. [PMID: 35010986 PMCID: PMC8746687 DOI: 10.3390/nu14010113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide riboside chloride (NRCl) is an effective form of vitamin B3. However, it cannot be used in ready-to-drink (RTD) beverages or high-water activity foods because of its intrinsic instability in water. To address this issue, we synthesized nicotinamide riboside trioleate chloride (NRTOCl) as a new hydrophobic nicotinamide riboside (NR) derivative. Contrary to NRCl, NRTOCl is soluble in an oil phase. The results of stability studies showed that NRTOCl was much more stable than NRCl both in water and in oil-in-water emulsions at 25 °C and 35 °C. Finally, we evaluated the bioavailability of NRTOCl by studying its digestibility in simulated intestinal fluid. The results demonstrated that NRTOCl was partially digestible and released NR in the presence of porcine pancreatin in a simulated intestinal fluid. This study showed that NRTOCl has the potential to be used as an NR derivative in ready-to-drink (RTD) beverages and other foods and supplement applications.
Collapse
Affiliation(s)
- Amin Zarei
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Sara Madarshahian
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Mojtaba Enayati
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| | - Bing Yan
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ 08807, USA; (B.Y.); (G.U.)
| | - Gerhard Ufheil
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ 08807, USA; (B.Y.); (G.U.)
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (A.Z.); (L.K.); (S.M.); (M.E.); (I.M.); (T.L.)
| |
Collapse
|
8
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|