1
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Zhu B, Chen X, Zhang T, Zhang Q, Fu K, Hua J, Zhang M, Qi Q, Zhao B, Zhao M, Yang L, Zhou B. Interactions between intestinal microbiota and metabolites in zebrafish larvae exposed to polystyrene nanoplastics: Implications for intestinal health and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134478. [PMID: 38696962 DOI: 10.1016/j.jhazmat.2024.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Mengyuan Zhang
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qing Qi
- Wuhan Business University, Wuhan 430056, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Den Hartogh DJ, Vlavcheski F, Tsiani E. Muscle Cell Insulin Resistance Is Attenuated by Rosmarinic Acid: Elucidating the Mechanisms Involved. Int J Mol Sci 2023; 24:ijms24065094. [PMID: 36982168 PMCID: PMC10049470 DOI: 10.3390/ijms24065094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Wang Y, Han Y, Lv R, He C, Zuo Z, Chen Y, Huang J. Herbal Tea Essences (HTE) Ameliorate HFD-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9315318. [PMID: 39280956 PMCID: PMC11401730 DOI: 10.1155/2022/9315318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/18/2024]
Abstract
Tea is one of the most popular beverages in the world. The health-promoting effects of tea and its individual constituents, including antiobesity and antihyperlipidaemia effects, have been well accepted. In this study, we evaluated the effects of herbal tea essence (HTE), a commercial product extracted from black tea, on HFD-induced obesity in mice. HTE effectively reduces the gain in body weight and improves glucose tolerance and insulin sensitivity after HFD treatment. HTE inhibits lipid accumulation in the body and reduces serum lipid contents. Furthermore, HTE negatively regulates the expression levels of genes that control lipogenesis and gluconeogenesis and upregulates the expression of genes for lipid β oxidation. The regulatory effects of HTE on these genes may occur through activation of the AKT, IRS-1, and AMPK signalling pathways. Our observations suggest that HTE could be a promising option for nutritional intervention in the treatment of obesity.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Han
- The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
- Xiamen Key Laboratory of Genetic Testing, Xiamen 361101, Fujian, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Chengyong He
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Chen R, Lian Y, Wen S, Li Q, Sun L, Lai X, Zhang Z, Zhu J, Tang L, Xuan J, Yuan E, Sun S. Shibi Tea (Adinandra nitida) and Camellianin A Alleviate CCl4-Induced Liver Injury in C57BL-6J Mice by Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Nutrients 2022; 14:nu14153037. [PMID: 35893891 PMCID: PMC9332116 DOI: 10.3390/nu14153037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Liver injury is a significant public health issue nowadays. Shibi tea is a non-Camellia tea prepared from the dried leaves of Adinandra nitida, one of the plants with the greatest flavonoid concentration, with Camellianin A (CA) being the major flavonoid. Shibi tea is extensively used in food and medicine and has been found to provide a variety of health advantages. The benefits of Shibi tea and CA in preventing liver injury have not yet been investigated. The aim of this study was to investigate the hepatoprotective effects of extract of Shibi tea (EST) and CA in mice with carbon tetrachloride (CCl4)-induced acute liver injury. Two different concentrations of EST and CA were given to model mice by gavage for 3 days. Treatment with two concentrations of EST and CA reduced the CCl4-induced elevation of the liver index, liver histopathological injury score, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Western blotting and immunohistochemical analysis demonstrated that EST and CA regulated the oxidative stress signaling pathway protein levels of nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), the expression of inflammatory cytokines, the phosphorylated nuclear factor-kappaB p65 (p-NF-κB)/nuclear factor-kappaB p65 (NF-κB) ratio, the phospho-p44/42 mitogen-activated protein kinase (p-MAPK), and the apoptosis-related protein levels of BCL2-associated X (Bax)/B cell leukemia/lymphoma 2 (Bcl2) in the liver. Taken together, EST and CA can protect against CCl4-induced liver injury by exerting antioxidative stress, anti-inflammation, and anti-apoptosis.
Collapse
Affiliation(s)
- Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Yingyi Lian
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510641, China;
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Junquan Zhu
- Guangdong Society of Plant Protection, Guangzhou 510640, China;
| | - Linsong Tang
- Taihongyuan Agriculture Co., Ltd., Xinyi, Maoming 525000, China;
| | - Ji Xuan
- Hospital of South China University of Technology, Guangzhou 510641, China;
| | - Erdong Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510641, China;
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-04218 (E.Y.); +86-20-8516-1045 (S.S.)
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-04218 (E.Y.); +86-20-8516-1045 (S.S.)
| |
Collapse
|