1
|
Mahajan S, Gavane S, Pandit-Taskar N. Targeted Radiopharmaceutical Therapy for Bone Metastases. Semin Nucl Med 2024; 54:497-512. [PMID: 38937221 DOI: 10.1053/j.semnuclmed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Radiopharmaceutical approaches for targeting bone metastasis have traditionally focused on palliation of pain. Several agents have been clinically used over the last several decades and have proven value in pain palliation providing pain relief and improving quality of life. The role is well established across several malignancies, most commonly used in osteoblastic prostate cancer patients. These agents have primarily based on targeting and uptake in bone matrix and have mostly included beta emitting isotopes. The advent alpha emitter and FDA approval of 223Ra-dichloride has created a paradigm shift in clinical approach from application for pain palliation to treatment of bone metastasis. The approval of 223Ra-dichloride given the survival benefit in metastatic prostate cancer patients, led to predominant use of this alpha emitter in prostate cancer patients. With rapid development of radiopharmaceutical therapies and approval of other targeted agents such as 177Lu-PSMA the approach to treatment of bone metastasis has further evolved and combination treatments have increasingly been applied. Novel approaches are needed to improve and expand the use of such therapies for treatment of bone metastasis. Combination therapies with different targeting mechanisms, combining chemotherapies and cocktail of alpha and beta emitters need further exploration.
Collapse
Affiliation(s)
- Sonia Mahajan
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Somali Gavane
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
2
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Bagheri R. 177Lu-EDTMP radiation absorbed dose evaluation in man based on biodistribution data in Wistar rats. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Askari E, Harsini S, Vahidfar N, Divband G, Sadeghi R. 177Lu-EDTMP for Metastatic Bone Pain Palliation: A Systematic Review and Meta-Analysis. Cancer Biother Radiopharm 2020; 36:383-390. [PMID: 33259726 DOI: 10.1089/cbr.2020.4323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Painful metastatic bone involvement is common in advanced stages of many cancers. Between available radionuclides for bone pain palliation, no consensus has been reached on lutetium ethylenediaminetetramethylene phosphonate (177Lu-EDTMP) administration in this milieu. The aim of this study is to evaluate the treatment efficacy, safety profile, and toxicities of 177Lu-EDTMP in patients with metastatic bone involvement, according to the published literature. Methods: A comprehensive literature search of PubMed/MEDLINE, Scopus, and Google Scholar databases was carried out to retrieve pertinent articles published until January 2019, concerning the clinical efficacy and safety of 177Lu-EDTMP for bone pain palliative purposes. Results: Eight studies (172 patients) were included. This analysis revealed statistically significant effect of 177Lu-EDTMP therapy on the visual analog score (4.84% (95% CI: 3.88-5.81; p < 0.001), bone palliative pain response (84%, 95% CI: 75%-90%; p < 0.001), and Karnofsky performance status (21%, 95% CI: 18%-24%; p < 0.001) overall (as well as in the high-dose and low-dose subgroups). Complete palliative pain response to treatment was observed in 32% (95% CI: 16%-53%) of patients receiving 177Lu-EDTMP. Anemia was found to be the most common hematologic toxicity imposed by this therapeutic approach (grade I/II anemia in 24% (95% CI: 14%-38%; p < 0.001) and grade III/IV anemia in 19% (95% CI: 12%-28%; p < 0.001)). Conclusions: 177Lu-EDTMP seems to have comparable efficacy and safety profile as that of the frequently administered radiopharmaceuticals for bone palliation. Therefore, this agent can be a good option for bone pain palliative purposes, in case of limited access to other bone palliative radiopharmaceuticals.
Collapse
Affiliation(s)
- Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Harsini
- Association of Nuclear Medicine and Molecular Imaging (ANMMI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Chakraborty S, Shetty P, Chakravarty R, Vimalnath KV, Kumar C, Sarma HD, Vatsa R, Shukla J, Mittal BR, Dash A. Formulation of ‘ready-to-use’ human clinical doses of 177Lu-labeled bisphosphonate amide of DOTA using moderate specific activity 177Lu and its preliminary evaluation in human patient. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiolabeled macrocyclic bisphosphonate ligands have recently been demonstrated to be highly efficacious in treatment of patients with painful bone metastases. Herein, we report a robust protocol for formulation of therapeutically relevant doses of 177Lu-labeled bisphosphonate amide of DOTA (BPAMD) using moderate specific activity 177Lu produced by direct (n,γ) route and its preliminary investigation in human patients. Doses (2.8 ± 0.2 GBq) were formulated with high radiochemical purity (98.3 ± 0.4 %) using a protocol optimized after extensive radiochemical studies. In vitro binding studies with mineralized osteosarcoma cells demonstrated specific binding of the radiotracer. Biodistribution studies in healthy Wistar rats demonstrated rapid skeletal accumulation with fast clearance from the non-target organs. In a patient administered with 555 MBq dose of 177Lu-BPAMD, intense radiotracer uptake was observed in the metastatic skeletal lesions with insignificant uptake in any other major non-targeted organs. Preliminary clinical investigations carried out after administration of 2.6 GBq of 177Lu-BPAMD revealed significant reduction in pain after 1 week without any adverse effects. The developed protocol for formulation of 177Lu-BPAMD doses using moderate specific activity carrier added 177Lu has been found to be effective and warrants wider investigations in patients with painful skeletal metastases.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| | - Priyalata Shetty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| | - K. V. Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - H. D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Rakhee Vatsa
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - B. R. Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| |
Collapse
|
6
|
Mirković M, Milanović Z, Stanković D, Petrović Đ, Vranješ-Đurić S, Janković D, Radović M. Investigation of 177Lu-labeled HEDP, DPD, and IDP as potential bone pain palliation agents. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1702243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marija Mirković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Zorana Milanović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Dalibor Stanković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Đorđe Petrović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Drina Janković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Magdalena Radović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Khawar A, Eppard E, Roesch F, Ahmadzadehfar H, Kürpig S, Meisenheimer M, Gaertner FC, Essler M, Bundschuh RA. Biodistribution and post-therapy dosimetric analysis of [ 177Lu]Lu-DOTA ZOL in patients with osteoblastic metastases: first results. EJNMMI Res 2019; 9:102. [PMID: 31781962 PMCID: PMC6882969 DOI: 10.1186/s13550-019-0566-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Abstract
Background Preclinical biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL suggest the bisphosphonate zoledronate as a promising new radiopharmaceutical for therapy of bone metastases. We evaluated biodistribution and normal organ absorbed doses resulting from therapeutic doses of [177Lu]Lu-DOTAZOL in patients with metastatic skeletal disease. Method Four patients with metastatic skeletal disease (age range, 64–83 years) secondary to metastatic castration-resistant prostate carcinoma or bronchial carcinoma were treated with a mean dose of 5968 ± 64 MBq (161.3 mCi) of [177Lu]Lu-DOTAZOL. Biodistribution was assessed with serial planar whole body scintigraphy at 20 min and 3, 24, and 167 h post injection (p.i.) and blood samples at 20 min and 3, 8, 24, and 167 h p.i. Percent of injected activity in the blood, kidneys, urinary bladder, skeleton, and whole body was determined. Bone marrow self-dose was determined by an indirect blood-based method. Urinary bladder wall residence time was calculated using Cloutier’s dynamic urinary bladder model with a 4-h voiding interval. OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) software was used to determine residence times in source organs by applying biexponential curve fitting and to calculate organ absorbed dose. Results Qualitative biodistribution analysis revealed early and high uptake of [177Lu]Lu-DOTAZOL in the kidneys with fast clearance showing minimal activity by 24 h p.i. Activity in the skeleton increased gradually over time. Mean residence times were found to be highest in the skeleton followed by the kidneys. Highest mean organ absorbed dose was 3.33 mSv/MBq for osteogenic cells followed by kidneys (0.490 mSv/MBq), red marrow (0.461 mSv/MBq), and urinary bladder wall (0.322 mSv/MBq). The biodistribution and normal organ absorbed doses of [177Lu]Lu-DOTAZOL are consistent with preclinical data. Conclusion [177Lu]Lu-DOTAZOL shows maximum absorbed doses in bone and low kidney doses, making it a promising agent for radionuclide therapy of bone metastasis. Further studies are warranted to evaluate the efficacy and safety of radionuclide therapy with [177Lu]Lu-DOTAZOL in the clinical setting.
Collapse
Affiliation(s)
- Ambreen Khawar
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany.
| | - Elisabeth Eppard
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Frank Roesch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Stefan Kürpig
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | | | - Florian C Gaertner
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| |
Collapse
|
8
|
Yonekura Y, Mattsson S, Flux G, Bolch WE, Dauer LT, Fisher DR, Lassmann M, Palm S, Hosono M, Doruff M, Divgi C, Zanzonico P. ICRP Publication 140: Radiological Protection in Therapy with Radiopharmaceuticals. Ann ICRP 2019; 48:5-95. [PMID: 31565950 DOI: 10.1177/0146645319838665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiopharmaceuticals are increasingly used for the treatment of various cancers with novel radionuclides, compounds, tracer molecules, and administration techniques. The goal of radiation therapy, including therapy with radiopharmaceuticals, is to optimise the relationship between tumour control probability and potential complications in normal organs and tissues. Essential to this optimisation is the ability to quantify the radiation doses delivered to both tumours and normal tissues. This publication provides an overview of therapeutic procedures and a framework for calculating radiation doses for various treatment approaches. In radiopharmaceutical therapy, the absorbed dose to an organ or tissue is governed by radiopharmaceutical uptake, retention in and clearance from the various organs and tissues of the body, together with radionuclide physical half-life. Biokinetic parameters are determined by direct measurements made using techniques that vary in complexity. For treatment planning, absorbed dose calculations are usually performed prior to therapy using a trace-labelled diagnostic administration, or retrospective dosimetry may be performed on the basis of the activity already administered following each therapeutic administration. Uncertainty analyses provide additional information about sources of bias and random variation and their magnitudes; these analyses show the reliability and quality of absorbed dose calculations. Effective dose can provide an approximate measure of lifetime risk of detriment attributable to the stochastic effects of radiation exposure, principally cancer, but effective dose does not predict future cancer incidence for an individual and does not apply to short-term deterministic effects associated with radiopharmaceutical therapy. Accident prevention in radiation therapy should be an integral part of the design of facilities, equipment, and administration procedures. Minimisation of staff exposures includes consideration of equipment design, proper shielding and handling of sources, and personal protective equipment and tools, as well as education and training to promote awareness and engagement in radiological protection. The decision to hold or release a patient after radiopharmaceutical therapy should account for potential radiation dose to members of the public and carers that may result from residual radioactivity in the patient. In these situations, specific radiological protection guidance should be provided to patients and carers.
Collapse
|
9
|
Alavi M, Khajeh-Rahimi F, Yousefnia H, Mohammadianpanah M, Zolghadri S, Bahrami-Samani A, Ghannadi-Maragheh M. 177Lu/ 153Sm-Ethylenediamine Tetramethylene Phosphonic Acid Cocktail: A Novel Palliative Treatment for Patients with Bone Metastases. Cancer Biother Radiopharm 2019; 34:280-287. [PMID: 30977670 DOI: 10.1089/cbr.2018.2683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Production of effective, low-cost, and efficient radiopharmaceuticals is an important task and requires further research and clinical studies. In this clinical trial, safety and efficacy of 177Lu/153Sm-ethylenediamine tetramethylene phosphonic acid (EDTMP) cocktail has been evaluated for pain relief of bone metastases. Materials and Methods: Twenty-five patients with the mean age of 55.5 ± 15.8 years participated in this study. Patients received a total dose of 37 MBq/kg. Pain and performance assessments were followed using a Brief Pain Inventory form. Complete blood count and renal and liver function tests were also performed up to 12 weeks postadministration. Results: Eighteen patients (72%) demonstrated complete pain relief (relief = 100%) and approximately all patients (96%) experienced significant improvement in their quality of life. No grade IV hematological toxicity was observed during the 12-week follow-up period, and grade III toxicity was seen in 1 patient only. In addition, no abnormalities were seen in renal and liver function during the follow-up period. Conclusions: There were no considerable complications after administration of 177Lu/153Sm EDTMP; this cocktail seems to be a safe and effective treatment for bone pain palliation in patients with skeletal metastases and improves the quality of life.
Collapse
Affiliation(s)
- Mehrosadat Alavi
- 1 Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.,2 Nuclear Medicine Department, Medical School, Shiraz University of Medical Science, Shiraz, Iran
| | - Farnaz Khajeh-Rahimi
- 2 Nuclear Medicine Department, Medical School, Shiraz University of Medical Science, Shiraz, Iran.,3 Nuclear Medicine Section, Medical School, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hassan Yousefnia
- 4 Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | | | - Samaneh Zolghadri
- 6 Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Ali Bahrami-Samani
- 6 Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | | |
Collapse
|
10
|
Preliminary results of biodistribution and dosimetric analysis of [ 68Ga]Ga-DOTA ZOL: a new zoledronate-based bisphosphonate for PET/CT diagnosis of bone diseases. Ann Nucl Med 2019; 33:404-413. [PMID: 30877560 DOI: 10.1007/s12149-019-01348-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Pre-clinical studies with gallium-68 zoledronate ([68Ga]Ga-DOTAZOL) have proposed it to be a potent bisphosphonate for PET/CT diagnosis of bone diseases and diagnostic counterpart to [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL. This study aims to be the first human biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL. METHODS Five metastatic skeletal disease patients (mean age: 72 years, M: F; 4:1) were injected with 150-190 MBq (4.05-5.14 mCi) of [68Ga]Ga-DOTAZOL i.v. Biodistribution of [68Ga]Ga-DOTAZOL was studied with PET/CT initial dynamic imaging for 30 min; list mode over abdomen (reconstructed as six images of 300 s) followed by static (skull to mid-thigh) imaging at 45 min and 2.5 h with Siemens Biograph 2 PET/CT camera. Also, blood samples (8 time points) and urine samples (2 time points) were collected over a period of 2.5 h. Total activity (MBq) in source organs was determined using interview fusion software (MEDISO Medical Imaging Systems, Budapest, Hungary). A blood-based method for bone marrow self-dose determination and a trapezoidal method for urinary bladder contents residence time calculation were used. OLINDA/EXM version 2.0 software (Hermes Medical Solutions, Stockholm, Sweden) was used to generate residence times for source organs, organ absorbed doses and effective doses. RESULTS High uptake in skeleton as target organ, kidneys and urinary bladder as organs of excretion and faint uptake in liver, spleen and salivary glands were seen. Qualitative and quantitative analysis supported fast blood clearance, high bone to soft tissue and lesion to normal bone uptake with [68Ga]Ga-DOTAZOL. Urinary bladder with the highest absorbed dose of 0.368 mSv/MBq presented the critical organ, followed by osteogenic cells, kidneys and red marrow receiving doses of 0.040, 0.031 and 0.027 mSv/MBq, respectively. The mean effective dose was found to be 0.0174 mSv/MBq which results in an effective dose of 2.61 mSv from 150 MBq. CONCLUSIONS Biodistribution of [68Ga]Ga-DOTAZOL was comparable to [18F]NaF, [99mTc]Tc-MDP and [68Ga]Ga-PSMA-617. With proper hydration and diuresis to reduce urinary bladder and kidney absorbed doses, it has clear advantages over [18F]NaF owing to its onsite, low-cost production and theranostic potential of personalized dosimetry for treatment with [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL.
Collapse
|
11
|
Dash A, Das T, Knapp FFR. Targeted Radionuclide Therapy of Painful Bone Metastases: Past Developments, Current Status, Recent Advances and Future Directions. Curr Med Chem 2019; 27:3187-3249. [PMID: 30714520 DOI: 10.2174/0929867326666190201142814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Bone pain arising from secondary skeletal malignancy constitutes one of the most common types of chronic pain among patients with cancer which can lead to rapid deterioration of the quality of life. Radionuclide therapy using bone-seeking radiopharmaceuticals based on the concept of localization of the agent at bone metastases sites to deliver focal cytotoxic levels of radiation emerged as an effective treatment modality for the palliation of symptomatic bone metastases. Bone-seeking radiopharmaceuticals not only provide palliative benefit but also improve clinical outcomes in terms of overall and progression-free survival. There is a steadily expanding list of therapeutic radionuclides which are used or can potentially be used in either ionic form or in combination with carrier molecules for the management of bone metastases. This article offers a narrative review of the armamentarium of bone-targeting radiopharmaceuticals based on currently approved investigational and potentially useful radionuclides and examines their efficacy for the treatment of painful skeletal metastases. In addition, the article also highlights the processes, opportunities, and challenges involved in the development of bone-seeking radiopharmaceuticals. Radium-223 is the first agent in this class to show an overall survival advantage in Castration-Resistant Prostate Cancer (CRPC) patients with bone metastases. This review summarizes recent advances, current clinical practice using radiopharmaceuticals for bone pain palliation, and the expected future prospects in this field.
Collapse
Affiliation(s)
- Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Furn F Russ Knapp
- Medical Isotopes Program, Isotope Development Group, MS 6229, Bldg. 4501, Oak Ridge National Laboratory, PO Box 2008, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| |
Collapse
|
12
|
Vimalnath KV, Rajeswari A, Sarma HD, Dash A, Chakraborty S. Ce-141-labeled DOTMP: A theranostic option in management of pain due to skeletal metastases. J Labelled Comp Radiopharm 2019; 62:178-189. [PMID: 30663098 DOI: 10.1002/jlcr.3710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/11/2022]
Abstract
Owing to its favorable radioactive decay characteristics (T1/2 = 32.51 d, Eβ [max] = 434.6 keV [70.5%] and 580.0 keV [29.5%], Eγ = 145.4 keV [48.5%]), 141 Ce could be envisaged as a theranostic radionuclide for use in nuclear medicine. The present article reports synthesis and evaluation of 141 Ce complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid (DOTMP) as a potent theranostic agent targeting metastatic skeletal lesions. Ce-141 was produced with 314 ± 29 MBq/mg (n = 6) specific activity and >99.9% radionuclidic purity (n = 6). Around 185 MBq dose of [141 Ce]Ce-DOTMP was synthesized with 98.6 ± 0.5% (n = 4) radiochemical yield under optimized conditions of reaction, and the preparation showed adequately high in vitro stability. Biodistribution studies in normal Wistar rats demonstrated significant skeletal localization and retention of injected activity (2.73 ± 0.28% and 2.63 ± 0.22% of injected activity per gram in femur at 3 hours and 14 days post-injection, respectively) with rapid clearance from non-target organs. The results of biodistribution studies were corroborated by serial scintigraphic imaging studies. These results demonstrate the potential utility of 141 Ce-DOTMP as a theranostic molecule for personalized patient care of cancer patients suffering from painful metastatic skeletal lesions.
Collapse
Affiliation(s)
- K V Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ardhi Rajeswari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Ramakurup REK, Chirayil V, Pandiyan A, Mallia MB, Kameswaran M, Shinto A, Dash A. Rhenium-188 Hydroxyethane 1,1-Diphosphonic Acid (HEDP) for Bone Pain Palliation Using BARC-HEDP Kits versus Pars-HEDP Kits: A Comparison on Preparation and Performance Aspects at Hospital Radiopharmacy. Indian J Nucl Med 2018; 33:302-305. [PMID: 30386051 PMCID: PMC6194777 DOI: 10.4103/ijnm.ijnm_39_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose of the Study: Rhenium-188 hydroxyethane 1,1-diphosphonic acid (HEDP) is a clinically established radiopharmaceutical for palliation of bone pain due to osseous metastases. Recently, the Bhabha Atomic Research Centre (BARC) had developed a freeze-dried kit for the preparation of rhenium-188 HEDP. The present study compares the radiochemistry aspects of indigenous BARC-HEDP kits with commercially available HEDP kits from Pars Isotope Company, Iran. Materials and Methods: Freeze-dried HEDP kits were obtained from Radiopharmaceuticals Division, BARC, and Pars Isotope Company, Iran. Following recommended procedures, rhenium-188 HEDP was prepared using freeze-dried kits from both sources using freshly eluted rhenium-188 sodium perrhenate obtained from a commercial tungsten-188/rhenium-188 generator. Results: Both kits could be used for the preparation of rhenium-188 HEDP in >95% radiochemical purity (RCP). Rhenium-188 HEDP prepared from both kits showed comparable in vitro stability as well as pharmacokinetic properties. The normal bone-to-soft tissue ratio observed for rhenium-188 HEDP prepared using BARC-HEDP kit and Pars-HEDP kit was 1.993 and 1.416, respectively. Conclusions: Both HEDP kits provided a user-friendly solution for the preparation of rhenium-188 HEDP. While Pars-HEDP-kit permits the addition of only 2 mL of rhenium-188 perrhenate solution per kit vial, BARC-HEDP-kit allows up to 5 mL. This feature permits the preparation of patient dose of rhenium-188 HEDP even with older generators providing rhenium-188 perrhenate having a low radioactive concentration (activity/mL). In addition, availability of an indigenous product is always preferable over imported options.
Collapse
Affiliation(s)
| | - Viju Chirayil
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharastra, India
| | - Arun Pandiyan
- Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India
| | | | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharastra, India
| | - Ajit Shinto
- Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharastra, India.,Homi Bhabha National Institute, Mumbai, Maharastra, India
| |
Collapse
|
14
|
Kumar C, Sharma R, Vats K, Mallia MB, Das T, Sarma HD, Dash A. Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Shinto AS, Mallia MB, Kameswaran M, Kamaleshwaran KK, Joseph J, Radhakrishnan ER, Upadhyay IV, Subramaniam R, Sairam M, Banerjee S, Dash A. Clinical utility of 188Rhenium-hydroxyethylidene-1,1-diphosphonate as a bone pain palliative in multiple malignancies. World J Nucl Med 2018; 17:228-235. [PMID: 30505219 PMCID: PMC6216741 DOI: 10.4103/wjnm.wjnm_68_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
188Rhenium-hydroxyethylidene-1,1-diphosphonate (188Re-HEDP) is a clinically established radiopharmaceutical for bone pain palliation of patients with metastatic bone cancer. Herein, the effectiveness of 188Re-HEDP for the palliation of painful bone metastases was investigated in an uncontrolled initial trial in 48 patients with different types of advanced cancers. A group of 48 patients with painful bone metastases of lung, prostate, breast, renal, and bladder cancer was treated with 2.96–4.44 GBq of 188Re-HEDP. The overall response rate in this group of patients was 89.5%, and their mean visual analog scale score showed a reduction from 9.1 to 5.3 (P < 0.003) after 1 week posttherapy. The patients did not report serious adverse effects either during intravenous administration or within 24 h postadministration of 188Re-HEDP. Flare reaction was observed in 54.2% of patients between day 1 and day 3. There was no correlation between flare reaction and response to therapy (P < 0.05). Although bone marrow suppression was observed in patients receiving higher doses of 188Re-HEDP, it did not result in any significant clinical problems. The present study confirmed the clinical utility and cost-effectiveness of 188Re-HEDP for palliation of painful bone metastases from various types of cancer in developing countries.
Collapse
Affiliation(s)
- Ajit S Shinto
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Madhava B Mallia
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Mythili Kameswaran
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - K K Kamaleshwaran
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Jephy Joseph
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - E R Radhakrishnan
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Indira V Upadhyay
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - R Subramaniam
- Department of Radiation Oncology, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Madhu Sairam
- Department of Radiation Oncology, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ashutosh Dash
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Chakraborty S, Vimalnath KV, Rajeswari A, Chakravarty R, Sarma HD, Radhakrishnan E, Kamaleshwaran K, Shinto AS, Dash A. A "mix-and-use" approach for formulation of human clinical doses of 177 Lu-DOTMP at hospital radiopharmacy for management of pain arising from skeletal metastases. J Labelled Comp Radiopharm 2017; 60:410-419. [PMID: 28477391 DOI: 10.1002/jlcr.3517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 11/06/2022]
Abstract
Use of bone-seeking radiopharmaceuticals is an established modality in the palliative care of pain due to skeletal metastases. 177 Lu-DOTMP is a promising radiopharmaceutical for this application owing to the ideally suited decay properties of 177 Lu and excellent thermodynamic stability and kinetic rigidity of the macrocyclic complex. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of clinical doses of 177 Lu-DOTMP at hospital radiopharmacy. After extensive radiochemical studies, an optimized strategy for formulation of clinical doses of 177 Lu-DOTMP was developed, which involves simple mixing of approximately 3.7 GBq of 177 Lu activity as 177 LuCl3 solution to an aqueous solution containing 5 mg of DOTMP and 8 mg of NaHCO3 . The proposed protocol yielded 177 Lu-DOTMP with >98% radiochemical purity, and the resultant formulation showed excellent in vitro stability and desired pharmacokinetic properties in animal model. Preliminary clinical investigations in 5 patients showed specific skeletal accumulation with preferential localization in the osteoblastic lesion sites and almost no uptake in soft tissue or any other major nontarget organ. The developed "mix-and-use" strategy would be useful for large number of nuclear medicine centers having access to 177 Lu activity and would thereby accelerate the clinical translation of 177 Lu-DOTMP.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - K V Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - A Rajeswari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - H D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - E Radhakrishnan
- Nuclear Medicine and PET Services, Comprehensive Cancer Care Centre, Kovai Medical Centre and Hospital, Coimbatore, India
| | - K Kamaleshwaran
- Nuclear Medicine and PET Services, Comprehensive Cancer Care Centre, Kovai Medical Centre and Hospital, Coimbatore, India
| | - Ajit S Shinto
- Nuclear Medicine and PET Services, Comprehensive Cancer Care Centre, Kovai Medical Centre and Hospital, Coimbatore, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
17
|
Sharma S, Singh B, Koul A, Mittal BR. Comparative Therapeutic Efficacy of 153Sm-EDTMP and 177Lu-EDTMP for Bone Pain Palliation in Patients with Skeletal Metastases: Patients' Pain Score Analysis and Personalized Dosimetry. Front Med (Lausanne) 2017; 4:46. [PMID: 28507988 PMCID: PMC5410571 DOI: 10.3389/fmed.2017.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction The aim of the present study was to compare the therapeutic efficacy of 153Sm-EDTMP and 177Lu-EDTMP in pain palliation in cancer patients with skeletal metastases. Materials and methods Thirty patients (25 M:5 F, mean age: 66.0 ± 14.7 years) of breast/prostate cancer with documented skeletal metastases were recruited prospectively. Twenty patients were considered randomly for treatment with 153Sm-EDTMP and with 177Lu-EDTMP in 10 patients, respectively. Using fixed dose of 37.0 MBq/kg body weight of each, the mean administered doses of 153Sm-EDTMP and 177Lu-EDTMP were 2,155.2 ± 419.6 MBq (1,347–2,857) and 1,935.1 ± 559.4 MBq (1,073–2,627), respectively. Anterior and posterior whole body images were acquired at different time points following radioactivity administration. The first data set of pre-void images (acquired at 0.5 h) representing the total activity of either of 153Sm-EDTMP or 177Lu-EDTMP was considered as reference images. All the serial images were used for patients’ dosimetry analysis by using organ level internal dosimetry assessment algorithm. Reduction in pain scoring was assessed clinically over 8 weeks by using appropriate WHO criteria and correlated with the absorbed dose to the metastatic sites. Results A total of 86 metastatic lesions clearly visualized on post-therapy serial images (matching on bone scans) were evaluated for absorbed dose calculations. Both 153Sm-EDTMP and 177Lu-EDTMP delivered similar absorbed dose to the metastatic sites, i.e., 6.22 ± 4.21 and 6.92 ± 3.92 mSv/MBq, respectively. The mean absorbed doses to various other organs were found to be comparable and within the safe limits. A complete response (CR) for each radionuclide was evaluated as 80.0%. No significant alternation in blood parameters and no untoward reaction were observed. However, a mild to severe toxicity was observed in two patients (1 each with 153Sm-EDTMP and 177Lu-EDTMP). Kaplan–Meier survival analysis demonstrated that 27/30 patients had pain-free survival (CR) up to the observational period of 8 weeks. However, no statistically significant correlation could be established between the pain scoring and absorbed dose to metastatic sites. Conclusion Both the radionuclides thus offer an effective and comparable therapeutic efficacy for bone pain palliation at an affordable cost and can be used interchangeably as per the availability.
Collapse
Affiliation(s)
- Sarika Sharma
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Baljinder Singh
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Das T, Shinto A, Kamaleshwaran KK, Sarma HD, Mohammed SK, Mitra A, Lad S, Rajan M, Banerjee S. Radiochemical studies, pre-clinical investigation and preliminary clinical evaluation of 170 Tm-EDTMP prepared using in-house freeze-dried EDTMP kit. Appl Radiat Isot 2017; 122:7-13. [DOI: 10.1016/j.apradiso.2016.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
19
|
Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis 2016; 34:1-10. [DOI: 10.1007/s10585-016-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
|
20
|
Gamma camera calibration and validation for quantitative SPECT imaging with 177Lu. Appl Radiat Isot 2016; 112:156-64. [DOI: 10.1016/j.apradiso.2016.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
21
|
Mallia MB, Shinto AS, Kameswaran M, Kamaleshwaran KK, Kalarikal R, Aswathy K, Banerjee S. A Freeze-Dried Kit for the Preparation of 188Re-HEDP for Bone Pain Palliation: Preparation and Preliminary Clinical Evaluation. Cancer Biother Radiopharm 2016; 31:139-44. [DOI: 10.1089/cbr.2016.2030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Madhava B. Mallia
- Radiopharmaceuticals Chemistry Section, Radiochemistry & Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Ajit Sugunan Shinto
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, India
| | - Mythili Kameswaran
- Isotope Production and Applications Division, Radiochemistry & Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Radhakrishnan Kalarikal
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, India
| | - K.K. Aswathy
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, India
| | - Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Radiochemistry & Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
22
|
Palliative treatment of metastatic bone pain with radiopharmaceuticals: A perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 2016; 110:87-99. [DOI: 10.1016/j.apradiso.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
|
23
|
Yousefnia H, Zolghadri S, Jalilian AR. Absorbed dose assessment of (177)Lu-zoledronate and (177)Lu-EDTMP for human based on biodistribution data in rats. J Med Phys 2015; 40:102-8. [PMID: 26170557 PMCID: PMC4478643 DOI: 10.4103/0971-6203.158694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylenediaminetetramethylene phosphonic acid (177Lu-EDTMP;as the only clinically bone pain palliation agent) was investigated based on biodistribution data in rats by medical internal radiation dosimetry (MIRD) method. 177Lu-ZLD and 177Lu-EDTMP were prepared in high radiochemical purity (>99%, instant thin layer chromatography (ITLC)) at the optimized condition. The biodistribution of the complexes demonstrated fast blood clearance and major accumulation in the bone tissue. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. The results showed that 177Lu-ZLD has better characteristics compared to 177Lu-EDTMP and can be a good candidate for bone pain palliation.
Collapse
Affiliation(s)
- Hassan Yousefnia
- Radiopharmaceutical Research and Development Lab (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Samaneh Zolghadri
- Radiopharmaceutical Research and Development Lab (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Amir Reza Jalilian
- Radiopharmaceutical Research and Development Lab (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
24
|
Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP. Appl Radiat Isot 2015; 104:128-35. [PMID: 26163291 DOI: 10.1016/j.apradiso.2015.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy.
Collapse
|
25
|
Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half-life of radionuclides. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Meckel M, Nauth A, Timpe J, Zhernosekov K, Puranik AD, Baum RP, Rösch F. Development of a [177Lu]BPAMD labeling kit and an automated synthesis module for routine bone targeted endoradiotherapy. Cancer Biother Radiopharm 2015; 30:94-9. [PMID: 25714451 DOI: 10.1089/cbr.2014.1720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Painful bone lesions, both benign and metastatic, are often managed using conventional analgesics. However, the treatment response is not immediate and is often associated with side-effects. Radionuclide therapy is used for pain palliation in bone metastases as well as some benign neoplasms. Endoradiotherapy has direct impact on the pain-producing bone elements, and hence, response is significant, with minimal or no side-effects. A new potential compound for endoradiotherapy is [(177)Lu]BPAMD. It combines a highly affine bisphosphonate, covalently bridged with DOTA through an amide bond, with the low-energy β(-) emitting therapeutic radiolanthanide (177)Lu. For routine chemical application, an automated synthesis of this radiopharmaceutical and a Kit-type labeling procedure appears to be a basic requirement for its good manufacturing practice (GMP) based production. A Kit formulation combining BPAMD, acetate buffer, and ethanol resulted in almost quantitative labeling yields. The use of ethanol and ascorbic acid as quenchers prevented radiolysis over 48 hours. An automated synthesis unit was designed for the production of therapeutic doses of [(177)Lu]BPAMD up to 5 GBq. The procedure was successfully applied for patient treatments.
Collapse
Affiliation(s)
- Marian Meckel
- 1 Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz , Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
The emerging potential of 177Lu-EDTMP: an attractive novel option for radiometabolic therapy of skeletal metastases. Clin Transl Imaging 2015. [DOI: 10.1007/s40336-015-0099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Das T, Sarma HD, Shinto A, Kamaleshwaran KK, Banerjee S. Formulation, Preclinical Evaluation, and Preliminary Clinical Investigation of an In-House Freeze-Dried EDTMP Kit Suitable for the Preparation of 177Lu-EDTMP. Cancer Biother Radiopharm 2014; 29:412-21. [DOI: 10.1089/cbr.2014.1664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tapas Das
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ajit Shinto
- Department of Nuclear Medicine and PET, Kovai Medical Centre and Hospital, Coimbatore, India
| | | | - Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
29
|
Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3342-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|