1
|
Technetium-99m radiolabeled nucleolin-targeted aptamer for glioma tumor imaging in murine models. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Xian S, Chen Z, Huang W, Zhao L, Qiu Y, Hao P, Sun L, Yang Q, Song L, Kang L. One-step synthesis of a radioiodinated anti-microRNA-21 oligonucleotide for theranostics in prostate tumor xenografts. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
4
|
Duan C, Gao Y, Luan S, Guo S, Cao X, Xu P, Fu P, Zhao C. Noninvasive evaluation of HABP1 expression with 99mTc-labeled small-interference RNA in ovarian cancer. Int J Radiat Biol 2021; 97:1569-1577. [PMID: 34402389 DOI: 10.1080/09553002.2021.1969052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Ovarian cancer is one of the most common gynecological cancers in women with a low 5-year survival rate. Evaluation of hyaluronic acid-binding protein 1 (HABP1) level can provide important information for the diagnosis and treatment of ovarian cancer. In this study, we designed a novel HABP1 probe based on 99mTc-radiolabeled small-interference RNA (siRNA) for detecting HABP1 expression noninvasively in vivo, thereby providing a new method for its diagnosis and treatment. METHODS A specific siHABP1 was selected because of its targetability and silencing effect. A negative control siRNA (NCsiRNA) with no homology with the human genome was used. SiHABP1 and NCsiRNA were radiolabeled with 99mTc using the bifunctional chelating agent hydrazinonicotinamide (HYNIC). The radiochemical purity and in vitro stability of the probe were determined by HPLC. The binding activity was measured by western blotting (WB) and RT-PCR. The HABP1-overexpressing human ovarian cancer cell line HO-8910 was used for cell uptake experiments, which were performed with or without transfection and measured with a gamma counter. HO8910-bearing mice were imaged at 1, 4, and 10 h, and biodistribution analysis was performed at 1, 4, 6, and 10 h after injection of 99mTc-HYNIC-siRNA. RESULTS 99mTc-HYNIC-siHABP1 had high radiochemical purity and good in vitro stability, and showed the same binding capacity and silencing effect as siHABP1. SPECT imaging showed that tumors were clearly visualized at 10 h after injection of 99mTc-HYNIC-siHABP1 but not after 99mTc-HYNIC-NCsiRNA, implying specific binding. The biodistribution results were consistent with those of SPECT imaging. CONCLUSIONS We showed that 99mTc-HYNIC-siHABP1 is a feasible probe for the noninvasive visualization of HABP1 expression in ovarian cancer.
Collapse
Affiliation(s)
- Chunyu Duan
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, PR China
| | - Yue Gao
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, PR China
| | - Sha Luan
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, PR China
| | - Shibo Guo
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, PR China
| | - Xueliang Cao
- Department of Clinical Laboratory, 4th Hospital of Harbin Medical University, Harbin, PR China.,Heilongjiang Longwei Precision Medical Laboratory Center, Harbin, PR China
| | - Peng Xu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, PR China
| | - Peng Fu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, PR China
| | - Changjiu Zhao
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
5
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Noninvasive PET Imaging of a Ga-68-Radiolabeled RRL-Derived Peptide in Hepatocarcinoma Murine Models. Mol Imaging Biol 2018; 21:286-296. [PMID: 29916116 DOI: 10.1007/s11307-018-1234-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Tc-99m- and I-131-labeled arginine-arginine-leucine (RRL) peptides have shown the feasibility of tumor imaging in our previous studies. However, there have been no reports using RRL peptide for positron emission tomography (PET) imaging. In this study, RRL was radiolabeled with Ga-68 under optimized reaction conditions to develop a better specific and effective tumor imaging agent. PROCEDURES RRL was synthesized and conjugated to a bifunctional chelating agent (DOTA-NHS), then radiolabeled with Ga-68. Labeling yield was optimized by varying pH, temperature, and reaction time and the stability was evaluated in human fresh serum. Cellular uptakes of [68Ga]DOTA-RRL and FITC-conjugated RRL in HepG2 cells were evaluated using a gamma counter, confocal microscopy, and flow cytometry. PET images and biodistribution were performed in HepG2 tumor-bearing mice after injection of [68Ga]DOTA-RRL or [68Ga]GaCl3 at different time points. Further, blocking study was investigated using cold RRL. RESULTS The labeling yield of [68Ga]DOTA-RRL was 80.6 ± 3.9 % with a pH of 3.5-4.5 at 100 °C for 15 min. The cellular uptake of [68Ga]DOTA-RRL in HepG2 cells was significantly higher than that of [68Ga]GaCl3 (P < 0.05). Moreover, the high fluorescent affinity of FITC-conjugated RRL in HepG2 cells was shown using confocal microscopy and flow cytometry. After injection of [68Ga]DOTA-RRL in HepG2 tumor-bearing mice, tumor regions exhibited high radioactive accumulation over 120 min and the highest uptake at 30 min. After blocked with cold RRL, HepG2 tumors could not be visualized. [68Ga]GaCl3 was unable to show tumor images at any time point. The biodistribution results confirmed the PET imaging and blocking results. CONCLUSIONS Our study successfully prepared [68Ga]DOTA-RRL with a high labeling yield under the optimized reaction conditions and demonstrated its potential role as a PET imaging agent for tumor-targeted diagnosis.
Collapse
|
7
|
Abstract
RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Marco Lucchino
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| |
Collapse
|
8
|
Fu P, Tian L, Cao X, Li L, Xu P, Zhao C. Imaging CXCR4 Expression with (99m)Tc-Radiolabeled Small-Interference RNA in Experimental Human Breast Cancer Xenografts. Mol Imaging Biol 2017; 18:353-9. [PMID: 26452556 DOI: 10.1007/s11307-015-0899-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Noninvasive quantification of chemokine receptor 4 (CXCR4) expression could serve as a prognostic indicator and may be of value for the design of personalized therapies and posttreatment monitoring. The objective of the present study was to assess the use of (99m)Tc-radiolabeled small-interference RNA (siRNA) targeting CXCR4 to detect CXCR4 expression in vivo. PROCEDURES CXCR4 siRNAs were radiolabeled with (99m)Tc using the bifunctional chelator hydrazinonicotinamide (HYNIC), and the labeling efficiency, specific activity and radiochemical purity were determined. The stability of the probe in serum was assessed by measuring its radiochemical purity and inhibitory activity by RT-PCR and western blotting. Biodistribution studies and static imaging were performed in MDA-MB-231 tumor-bearing mice. RESULTS Radiochemical purity remained highly stable in PBS and fresh human serum at room temperature and at 37 °C. Radiolabeled siRNA1 showed strong inhibitory effects similar to those of unlabeled siRNA1 on both CXCR4 messenger RNA (mRNA) and protein in vitro. The excretion of the probe occurred mainly through the liver and kidneys. Tumors were clearly visualized at 1-10 h after injection of the probe, but not after injection of the control probe. CONCLUSIONS (99m)Tc-labeled CXCR4 siRNA1 shows tumor-specific accumulation and could be a promising strategy for the visualization of CXCR4 expression in human breast cancer.
Collapse
Affiliation(s)
- Peng Fu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, China
| | - Lin Tian
- Department of Pathology, 1st Hospital of Harbin Medical University, Harbin, China
| | - Xueliang Cao
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, China
| | - Changjiu Zhao
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, China.
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
9
|
Chen XQ, Liu M, Wang RF, Yan P, Zhang CL, Ma C, Zhao Q, Yin L, Zhao GY, Guo FQ. Noninvasive imaging of c(RGD) 2 -9R as a potential delivery carrier for transfection of siRNA in malignant tumors. J Labelled Comp Radiopharm 2017; 60:385-393. [PMID: 28423195 DOI: 10.1002/jlcr.3514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
The purpose of our study was to develop and evaluate a novel integrin αv β3 -specific delivery carrier for transfection of siRNA in malignant tumors. We adopted arginine-glycine-aspartate (RGD) motif as a tissue target for specific recognition of integrin αν β3 . A chimaeric peptide was synthesized by adding nonamer arginine residues (9-arginine [9R]) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2 -9R, to enable small interfering RNA (siRNA) binding. To test the applicability of the delivery carrier in vivo, c(RGD)2 -9R was labeled with radionuclide of technetium-99m. Biodistribution and γ-camera imaging studies were performed in HepG2 xenograft-bearing nude mice. As results, an optimal 10:1 molar ratio of 99m Tc-c(RGD)2 -9R to siRNA was indicated by the electrophoresis on agarose gels. 99m Tc-c(RGD)2 -9R/siRNA remained stable under a set of conditions in vitro. For in vivo study, tumor radioactivity uptake of 99m Tc-c(RGD)2 -9R/siRNA in nude mice bearing HepG2 xenografts was significantly higher than that of control probe (P < .05). The xenografts were clearly visualized at 4 hours till 6 hours noninvasively after intravenous injection of 99m Tc-c(RGD)2 -9R/siRNA, while the xenografts were not visualized at any time after injection of control probe. It was concluded that c(RGD)2 -9R could be an effective siRNA delivery carrier. Technetium-99m radiolabeled-delivery carrier represents a potential imaging strategy for RNAi-based therapy.
Collapse
Affiliation(s)
- Xue Qi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rong Fu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chun Li Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Qian Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Guang Yu Zhao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Feng Qin Guo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
11
|
Chen X, Liu M, Wang R, Yan P, Zhang C, Ma C, Yin L. Construction and Biological Evaluation of a Novel Integrin α νβ₃-Specific Carrier for Targeted siRNA Delivery In Vitro. Molecules 2017; 22:molecules22020231. [PMID: 28165399 PMCID: PMC6155842 DOI: 10.3390/molecules22020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
(1) Background: The great potential of RNA interference (RNAi)-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs) to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2) Methods: Arginine-glycine-aspartate motif (RGD) was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3) Results: An optimal 10:1 molar ratio of c(RGD)2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD)2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4) Conclusion: The chimeric peptide of c(RGD)2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| |
Collapse
|
12
|
Kano D, Nakagami Y, Kurihara H, Hosokawa S, Zenda S, Kusumoto M, Fujii H, Kaneta T, Saito S, Uesawa Y, Kagaya H. Development of a double-stranded siRNA labelling method by using 99mTc and single photon emission computed tomography imaging. J Drug Target 2016; 25:172-178. [DOI: 10.1080/1061186x.2016.1223675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Daisuke Kano
- Department of Pharmacy, National Cancer Centre Hospital East, Chiba, Japan
| | - Yoshihiro Nakagami
- Department of Diagnostic Radiology, National Cancer Centre Hospital East, Chiba, Japan
- Department of Radiology, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Centre Hospital East, Chiba, Japan
| | - Shota Hosokawa
- Department of Radiation Oncology, National Cancer Centre Hospital East, Chiba, Japan
| | - Sadamoto Zenda
- Division of Functional Imaging, Research Centre for Innovative Oncology, National Cancer Centre Hospital East, Chiba, Japan
| | - Masahiko Kusumoto
- Department of Diagnostic Radiology, National Cancer Centre Hospital East, Chiba, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Research Centre for Innovative Oncology, National Cancer Centre Hospital East, Chiba, Japan
| | - Tomohiro Kaneta
- Department of Radiology, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Shinichiro Saito
- Department of Pharmacy, National Cancer Centre Hospital East, Chiba, Japan
| | - Yoshihiro Uesawa
- Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hajime Kagaya
- Department of Clinical Pharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
13
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 596] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Abstract
Small interfering RNA (siRNA) is emerging as a class of therapeutic with extremely high potential, particularly in the field of oncology. Despite this growing interest, further understanding of how siRNA behaves in vivo is still required before significant uptake into clinical application. To this end, many molecular imaging modalities have been utilised to gain a better understanding of the biodistribution and pharmacokinetics of administered siRNA and delivery vehicles. This highlight aims to provide an overview of the current state of the field for preclinical imaging of siRNA delivery.
Collapse
|
15
|
Kang L, Huo Y, Ji Q, Fan S, Yan P, Zhang C, Ma H, Hao P, Sun H, Zheng Z, Xu X, Wang R. Noninvasive visualization of microRNA-155 in multiple kinds of tumors using a radiolabeled anti-miRNA oligonucleotide. Nucl Med Biol 2015; 43:171-8. [PMID: 26872442 DOI: 10.1016/j.nucmedbio.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/29/2015] [Accepted: 11/29/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE We investigated whether a (99m)Tc radiolabeled anti-miRNA-155 oligonucleotide (AMO-155) could visualize the expression of miR-155 in multiple kinds of tumors in vivo. METHODS AMO-155 was chemically synthesized and modified with 2'-O-methyl (2'-OMe) and phosphorothioate (PS). It was radiolabeled with (99m)Tc via the conjugation with NHS-MAG3 at 5' end. The characterization of radiolabeling and serum stability was evaluated using high performance liquid chromatography (HPLC) and agarose gel electrophoresis. The expression of C/EBPβ, one of the miR-155 target proteins, was assessed using Western blot. The cellular uptake and delivery of AMO-155 was further evaluated in tumor cells. (99m)Tc-AMO-155 was tested in vivo in multiple tumor models, including miR-155 over-expressed and low-expressed tumor models. Finally, biodistribution of (99m)Tc-AMO-155 was evaluated. RESULTS (99m)Tc-AMO-155 was prepared with high yield and radiochemical purity. It showed high stability in fresh human serum for 10h. (99m)Tc-AMO-155 displayed comparable capacity as unlabeled AMO-155 to increase the expression of C/EBPβ protein in MCF-7 cells. (99m)Tc-AMO-155 showed an increased radioactive uptake in MCF-7 cells after 8h of incubation, whereas no change of (99m)Tc-pertechnetate uptake was observed. Carboxyfluorescein (FAM) labeled AMO-155 had higher fluorescent delivery than Control in HeLa and HepG2 cells by confocal microscopy. In miR-155 over-expressed tumor models, (99m)Tc-AMO-155 showed significantly higher tumor accumulation than (99m)Tc-Control. Furthermore, (99m)Tc-AMO-155 was capable of discriminating between MCF-7 and MDA-MB-231 tumors based on their expression of miR-155. CONCLUSIONS Our study successfully prepared and proved (99m)Tc-AMO-155 as a prospective imaging agent for the noninvasive visualization of miR-155 expression in vivo.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yan Huo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Quanbo Ji
- Department of Orthopedics, PLA General Hospital, Beijing 100853, China
| | - Shiyong Fan
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Huan Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Pan Hao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Hongwei Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhibing Zheng
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
16
|
Kang L, Fan Z, Sun H, Feng Y, Ma C, Yan P, Zhang C, Ma H, Hao P, Chen X, Zheng Z, Xu X, Wang R. Improved synthesis and biological evaluation of Tc-99m radiolabeled AMO for miRNA imaging in tumor xenografts. J Labelled Comp Radiopharm 2015; 58:461-8. [PMID: 26503645 DOI: 10.1002/jlcr.3351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) have been considered as important biomarkers for malignant tumors. In this study, we introduced an improved (99m)Tc labeling method for noninvasive visualization of overexpressed miRNAs in tumor-bearing mice. Anti-miRNA-21 oligonucleotide (AMO) with partial 2'-O-methyl and phosphorothioate modification was designed and chemically synthesized. After conjugated with NHS-MAG3, AMO was labeled with (99m)Tc. Optimization was made to shorten reaction time and to improve labeling efficiency. Labeling efficiency was 97%, and specific activity was 2.78 MBq/ng. During 12 h, (99m)Tc-AMO showed no significant degradation by gel electrophoresis. Its radiochemical purity was stable, between 95.8% and 99.1%. Further, (99m)Tc-AMO decreased the level of miR-21 and increased the expression of PTEN protein at cellular level, shown by qRT-PCR and Western blot. Fluorescent protein labeled AMO displayed specific distribution and good stability in tumor cells. After the administration in tumor-bearing mice, (99m)Tc-AMO showed more radioactive uptake in the miR-21 over-expressed tumors than scramble control. Biodistribution results further proved the significant difference of tumor uptake between (99m)Tc-AMO and (99m)Tc-control. Therefore, this study presents an improved method with shorten time to prepare a (99m)Tc radiolabeled AMO. In addition, it supports the role of (99m)Tc-AMO for noninvasive visualization of miR-21 in malignant tumors.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhongyi Fan
- Department of Oncology, PLA General Hospital, Beijing, 100853, China
| | - Hongwei Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yingying Feng
- Department of Colorectal Surgery, Second Artillery General Hospital, Beijing, 100088, China
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Huan Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Pan Hao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhibing Zheng
- Laboratory of Computer-aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
17
|
Kang L, Xu XJ, Ma C, Wang RF, Yan P, Zhang CL, Sun HW, Li D. Optimized preparation of a (99m)Tc-radiolabeled probe for tracing microRNA. Cell Biochem Biophys 2015; 71:905-12. [PMID: 25315639 DOI: 10.1007/s12013-014-0281-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antisense oligonucleotides have been used for a variety of purposes in microRNA (miRNA) research including functional evaluation, target recognition, and gene studies. Although several (99m)Tc-radiolabeled oligonucleotides have been reported in antisense imaging, none of those were related to miRNA tracing. Moreover, separation after labeling was always required to achieve acceptable radiochemical purity. In this study, we prepared a (99m)Tc-radiolabeled oligonucleotide under optimized conditions for the purpose of tracing miRNA. A 22mer anti-miRNA oligonucleotide (AMO) was designed completely complementary to the sequence of mature miR-21. AMO probe modified with 2'-O-Methyl and phosphorothioate backbone was designed and synthesized. This probe was conjugated with a bifunctional chelator S-acetylmercaptoacetyltriglycine (NHS-MAG3) via a primary amine on 5'-end. Furthermore, it was radiolabeled and its optimization labeling conditions were performed by varying the amount of stannous ion, (99m)Tc-pertecnetate, and reaction time, respectively. Finally, the labeled product was identified by gel electrophoresis and evaluated for its serum stability. The AMO was synthesized with partial 2'-OMe and phosphorothioate modification to improve its stability. Excess of MAG3 impurity was removed by precipitation of tin and MAG3 after the conjugation. The labeling efficiency reached 97 % under the optimal reaction conditions of 2 μg/μL SnCl2·2H2O addition, (99m)Tc solution with high specific activity, and 90-min reaction at room temperature. Gel electrophoresis confirmed that the peak of radioactivity located the same position of oligomer, which identified the successful radiolabeling. After incubated with human fresh serum for 12 h, labeled AMO showed good stability with high radiochemical purity and no significant degradation. A (99m)Tc-labeled AMO targeting miR-21 can be prepared with high labeling efficiency under optimized conditions, which provides a good support for the future use of miRNA-targeted tracing and imaging.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, Beijing, 100034, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Synthesis of a stabilized 177Lu–siRNA complex and evaluation of its stability and RNAi activity. Nucl Med Commun 2015; 36:636-45. [DOI: 10.1097/mnm.0000000000000292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Demonstration of dose dependent cytotoxic activity in SW480 colon cancer cells by ¹⁷⁷Lu-labeled siRNA targeting IGF-1R. Nucl Med Biol 2013; 40:529-36. [PMID: 23618769 DOI: 10.1016/j.nucmedbio.2012.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/28/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE The radiolabeling of targeting biomolecules with gamma emitter radionuclides for tracing and beta emitters for therapy involves the conjugation of such biomolecules to the chelating agents to form complexes with the radionuclide of interest. In this study, radioconjugate of IGF-1R siRNA with lutetium-177 ((177)Lu) was produced, and the anti-proliferation and apoptosis effects elicited by this (177)Lu-siRNA complex in the SW480 colon cancer cells were evaluated. METHODS IGF-1R and Luciferase siRNAs were conjugated with p-SCN-Bn-DTPA, and then radiolabeled with (177)Lu. The effects of labeled and non-labeled IGF-1R siRNAs on IGF-1R expression were assessed with RT-PCR analysis and ELISA assay. IGF-1R siRNAs induced cell death and apoptosis were investigated using MTT assay and Annexin-V/propidium iodide (PI) double staining, respectively. RESULTS Combined purification using Vivaspin and PD-10 columns resulted in a radiochemical purity of 97.32% ± 1.97%. Knockdown effect of the labeled IGF-1R siRNA was not significantly different from the non-labeled duplex of the same sequence (P<0.05), but it was significant compared to the Luciferase siRNAs (P<0.001). Proliferation decreased significantly, but apoptosis increased in the cells treated with the (177)Lu-IGF-1R siRNA in comparison with either (177)Lu or IGF-1R siRNA (P<0.001). CONCLUSION Radioconjugate of IGF-1R siRNA, p-SCN-Bn-DTPA and (177)Lu was successfully produced and characterized as radiopharmaceutical. The present study demonstrates the involvement of (177)Lu-labeled IGF-1R siRNA in the inhibition of cell growth and induction of apoptosis in colon cancer cells.
Collapse
|
20
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
21
|
Christensen J, Litherland K, Faller T, van de Kerkhof E, Natt F, Hunziker J, Krauser J, Swart P. Metabolism studies of unformulated internally [3H]-labeled short interfering RNAs in mice. Drug Metab Dispos 2013; 41:1211-9. [PMID: 23524663 DOI: 10.1124/dmd.112.050666] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Absorption, distribution, metabolism, and excretion properties of two unformulated model short interfering RNA (siRNAs) were determined using a single internal [(3)H]-radiolabeling procedure, in which the full-length oligonucleotides were radiolabeled by Br/(3)H -exchange. Tissue distribution, excretion, and mass balance of radioactivity were investigated in male CD-1 mice after a single intravenous administration of the [(3)H]siRNAs, at a target dose level of 5 mg/kg. Quantitative whole-body autoradiography and liquid scintillation counting techniques were used to determine tissue distribution. Radiochromatogram profiles were determined in plasma, tissue extracts, and urine. Metabolites were separated by liquid chromatography and identified by radiodetection and high-resolution accurate mass spectrometry. In general, there was little difference in the distribution of total radiolabeled components after administration of the two unformulated [(3)H]siRNAs. The radioactivity was rapidly and widely distributed throughout the body and remained detectable in all tissues investigated at later time points (24 and 48 hours for [(3)H]MRP4 (multidrug resistance protein isoform 4) and [(3)H]SSB (Sjögren Syndrome antigen B) siRNA, respectively). After an initial rapid decrease, concentrations of total radiolabeled components in dried blood decreased at a much slower rate. A nearly complete mass balance was obtained for the [(3)H]SSB siRNA, and renal excretion was the main route of elimination (38%). The metabolism of the two model siRNAs was rapid and extensive. Five minutes after administration, no parent compound could be detected in plasma. Instead, radiolabeled nucleosides resulting from nuclease hydrolysis were observed. In the metabolism profiles obtained from various tissues, only radiolabeled nucleosides were found, suggesting that siRNAs are rapidly metabolized and that the distribution pattern of total radiolabeled components can be ascribed to small molecular weight metabolites.
Collapse
Affiliation(s)
- Jesper Christensen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Alsbaiee A, Jules MS, Beingessner RL, Cho JY, Yamazaki T, Fenniri H. Synthesis of rhenium chelated MAG3 functionalized rosette nanotubes. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Ifediba MA, Moore A. In vivo imaging of the systemic delivery of small interfering RNA. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:428-37. [PMID: 22228711 DOI: 10.1002/wnan.1158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Short interfering RNAs (siRNAs) have emerged as a potent new class of therapeutics, which regulate gene expression through sequence-specific inhibition of mRNA translation. Human trials of siRNAs have highlighted the need for robust delivery and detection techniques that will enable the application of these therapeutics to increasingly complex disease and organ systems. Efforts to monitor the in vivo trafficking and efficacy of siRNAs have routinely involved bioluminescence imaging of naked siRNA molecules. More recently, siRNAs have been incorporated into a variety of molecular imaging probes to promote their detection with clinically relevant imaging modalities. Lipid-, polymer-, and nanoparticle-based siRNA delivery vehicles have proven effective in improving the stability, bioavailability, and target specificity of siRNAs following systemic administration in vivo. Additionally, these methods provide a platform to modify siRNAs with a variety of contrast agents and have enabled nuclear and magnetic resonance imaging of siRNA delivery in preclinical studies. These image-guided delivery approaches represent a crucial step in the transition of siRNA therapeutics to the clinic.
Collapse
Affiliation(s)
- Marytheresa A Ifediba
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|