1
|
Chakraborty K, Mondal J, An JM, Park J, Lee YK. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15030971. [PMID: 36986832 PMCID: PMC10054444 DOI: 10.3390/pharmaceutics15030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Radiopharmaceutical therapy, which can detect and treat tumours simultaneously, was introduced more than 80 years ago, and it has changed medical strategies with respect to cancer. Many radioactive radionuclides have been developed, and functional, molecularly modified radiolabelled peptides have been used to produce biomolecules and therapeutics that are vastly utilised in the field of radio medicine. Since the 1990s, they have smoothly transitioned into clinical application, and as of today, a wide variety of radiolabelled radionuclide derivatives have been examined and evaluated in various studies. Advanced technologies, such as conjugation of functional peptides or incorporation of radionuclides into chelating ligands, have been developed for advanced radiopharmaceutical cancer therapy. New radiolabelled conjugates for targeted radiotherapy have been designed to deliver radiation directly to cancer cells with improved specificity and minimal damage to the surrounding normal tissue. The development of new theragnostic radionuclides, which can be used for both imaging and therapy purposes, allows for more precise targeting and monitoring of the treatment response. The increased use of peptide receptor radionuclide therapy (PRRT) is also important in the targeting of specific receptors which are overexpressed in cancer cells. In this review, we provide insights into the development of radionuclides and functional radiolabelled peptides, give a brief background, and describe their transition into clinical application.
Collapse
Affiliation(s)
- Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| |
Collapse
|
2
|
Saatchi K, Bénard F, Hundal N, Grimes J, Shcherbinin S, Pourghiasian M, Brooks DE, Celler A, Häfeli UO. Preclinical PET Imaging and Toxicity Study of a 68Ga-Functionalized Polymeric Cardiac Blood Pool Agent. Pharmaceutics 2023; 15:pharmaceutics15030767. [PMID: 36986628 PMCID: PMC10052923 DOI: 10.3390/pharmaceutics15030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cardiac blood pool imaging is currently performed almost exclusively with 99mTc-based compounds and SPECT/CT imaging. Using a generator-based PET radioisotope has a few advantages, including not needing nuclear reactors to produce it, obtaining better resolution in humans, and potentially reducing the radiation dose to the patient. When the shortlived radioisotope 68Ga is used, it can be applied repeatedly on the same day—for example, for the detection of bleeding. Our objective was to prepare and evaluate a long-circulating polymer functionalized with gallium for its biodistribution, toxicity, and dosimetric properties. A 500 kDa hyperbranched polyglycerol was conjugated to the chelator NOTA and radiolabeled rapidly at room temperature with 68Ga. It was then injected intravenously into a rat, and gated imaging allowed us to easily observe wall motion and cardiac contractility, confirming the suitability of this radiopharmaceutical for cardiac blood pool imaging. Internal radiation dose calculations showed that the radiation doses that patients would receive from the PET agent would be 2.5× lower than those from the 99mTc agent. A complete 14-day toxicology study in rats concluded that there were no gross pathology findings, changes in body or organ weights, or histopathological events. This radioactive-metal-functionalized polymer might be a suitable non-toxic agent to advance for clinical application.
Collapse
Affiliation(s)
- Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | | | - Joshua Grimes
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sergey Shcherbinin
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| |
Collapse
|
3
|
Judmann B, Braun D, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors. ACS OMEGA 2022; 7:27690-27702. [PMID: 35967067 PMCID: PMC9366781 DOI: 10.1021/acsomega.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/μmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.
Collapse
Affiliation(s)
- Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, T6G 1Z2 Edmonton, AB, Canada
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe 68Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res 2022; 12:35. [PMID: 35695985 PMCID: PMC9192916 DOI: 10.1186/s13550-022-00906-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adnectin is a protein family derived from the 10th type III domain of human fibronectin (10Fn3) with high-affinity targeting capabilities. Positron emission tomography (PET) probes derived from anti-programmed death ligand-1 (PD-L1) Adnectins, including 18F- and 68Ga-labeled BMS-986192, are recently developed for the prediction of patient response to immune checkpoint blockade. The 68Ga-labeled BMS-986192, in particular, is an attractive probe for under-developed regions due to the broader availability of 68Ga. However, the pharmacokinetics and biocompatibility of 68Ga-labeled BMS-986192 are still unknown, especially in non-human primates, impeding its further clinical translation. Methods We developed a variant of 68Ga-labeled BMS-986192 using 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) as the radionuclide–chelator. The resultant probe, 68Ga-NODAGA-BMS986192, was evaluated in terms of targeting specificity using a bilateral mouse tumor model inoculated with wild-type B16F10 and B16F10 transduced with human PD-L1 (hPD-L1-B16F10). The dynamic biodistribution and radiation dosimetry of this probe were also investigated in non-human primate cynomolgus. Results 68Ga-NODAGA-BMS986192 was prepared with a radiochemical purity above 99%. PET imaging with 68Ga-NODAGA-BMS986192 efficiently delineated the hPD-L1-B16F10 tumor at 1 h post-injection. The PD-L1-targeting capability of this probe was further confirmed using in vivo blocking assay and ex vivo biodistribution studies. PET dynamic imaging in both mouse and cynomolgus models revealed a rapid clearance of the probe via the renal route, which corresponded to the low background signals of the PET images. The probe also exhibited a favorable radiation dosimetry profile with a total-body effective dose of 6.34E-03 mSv/MBq in male cynomolgus. Conclusions 68Ga-NODAGA-BMS986192 was a feasible and safe tool for the visualization of human PD-L1. Our study also provided valuable information on the potential of targeted PET imaging using Adnectin-based probes. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00906-x.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dan Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
5
|
Canziani L, Marenco M, Cavenaghi G, Manfrinato G, Taglietti A, Girella A, Aprile C, Pepe G, Lodola L. Chemical and Physical Characterisation of Macroaggregated Human Serum Albumin: Strength and Specificity of Bonds with 99mTc and 68Ga. Molecules 2022; 27:404. [PMID: 35056719 PMCID: PMC8777888 DOI: 10.3390/molecules27020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Macroaggregated human serum albumin (MAA) properties are widely used in nuclear medicine, labelled with 99mTc. The aim of this study is to improve the knowledge about the morphology, size, dimension and physical-chemical characteristics of MAA and their bond with 99mTc and 68Ga. METHODS Commercial kits of MAA (Pulmocis®) were used. Characterisation through experiments based on SEM, DLS and Stokes' Law were carried out. In vitro experiments for Langmuir isotherms and pH studies on radiolabelling were performed and the stability of the radiometal complex was verified through competition reactions. RESULTS The study settles the MAA dimension within the range 43-51 μm. The Langmuir isotherm reveals for [99mTc]MAA: Bmax (46.32), h (2.36); for [68Ga]MAA: Bmax (44.54), h (0.893). Dual labelling reveals that MAA does not discriminate different radioisotopes. Experiments on pH placed the optimal pH for labelling with 99mTc at 6. CONCLUSION Radiolabelling of MAA is possible with high efficiency. The nondiscriminatory MAA bonds make this drug suitable for radiolabelling with different radioisotopes or for dual labelling. This finding illustrates the need to continue investigating MAA chemical and physical characteristics to allow for secure labelling with different isotopes.
Collapse
Affiliation(s)
- Letizia Canziani
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Manuela Marenco
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Giorgio Cavenaghi
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Giulia Manfrinato
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Angelo Taglietti
- Chemistry Department, University of Pavia, 27100 Pavia, Italy; (A.T.); (A.G.)
| | - Alessandro Girella
- Chemistry Department, University of Pavia, 27100 Pavia, Italy; (A.T.); (A.G.)
| | - Carlo Aprile
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Giovanna Pepe
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| | - Lorenzo Lodola
- Fondazione IRCCS Policlinico San Matteo, Nuclear Medicine Unit, 27100 Pavia, Italy; (G.C.); (G.M.); (C.A.); (G.P.); (L.L.)
| |
Collapse
|
6
|
PET imaging of hypoxia and apoptosis. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Zacherl MJ, Todica A, Wängler C, Schirrmacher R, Hajebrahimi MA, Pircher J, Li X, Lindner S, Brendel M, Bartenstein P, Massberg S, Brunner S, Lehner S, Hacker M, Huber BC. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer. J Nucl Cardiol 2021; 28:2965-2975. [PMID: 32676914 PMCID: PMC8709820 DOI: 10.1007/s12350-020-02262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to be a possible imaging and therapeutic target after myocardial infarction (MI). The murine-based and mouse-specific 68Ga-mCXCL12 PET tracer could be suitable for serial in vivo quantification of cardiac CXCR4 expression in a murine model of MI. METHODS AND RESULTS At days 1-6 after MI, mice were intravenously injected with 68Ga-mCXCL12. Autoradiography was performed and the infarct-to-remote ratio (I/R) was determined. In vivo PET imaging with 68Ga-mCXCL12 was conducted on days 1-6 after MI and the percentage of the injected dose (%ID/g) of the tracer uptake in the infarct area was calculated. 18F-FDG-PET was performed for anatomical landmarking. Ex vivo autoradiography identified CXCR4 upregulation in the infarct region with an increasing I/R after 12 hours (1.4 ± 0.3), showing a significant increase until day 2 (4.5 ± 0.6), followed by a plateau phase (day 4) and decrease after 10 days (1.3 ± 1.0). In vivo PET imaging identified similar CXCR4 upregulation in the infarct region which peaked around day 3 post MI (9.7 ± 5.0 %ID/g) and then subsequently decreased by day 6 (2.8 ± 1.0 %ID/g). CONCLUSION Noninvasive molecular imaging of cardiac CXCR4 expression using a novel, murine-based, and specific 68Ga-mCXCL12 tracer is feasible both ex vivo and in vivo.
Collapse
Affiliation(s)
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada
| | | | - Joachim Pircher
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Xiang Li
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Steffen Massberg
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Brunner
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation Therapy, Regensburg, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Bruno C Huber
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Synthesis, Characterization and In Vitro Evaluation of Hybrid Monomeric Peptides Suited for Multimodal Imaging by PET/OI: Extending the Concept of Charge-Cell Binding Correlation. Pharmaceuticals (Basel) 2021; 14:ph14100989. [PMID: 34681213 PMCID: PMC8541144 DOI: 10.3390/ph14100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
In the context of hybrid multimodal imaging agents for gastrin releasing peptide receptor (GRPR) targeting, a correlation between the net charge and the receptor affinity of the agents was recently found. In particular, a decrease in in vitro GRPR binding affinity was observed in case of an increasing number of negative charges for dually labeled GRPR-specific peptide dimers suited for positron emission tomography and optical imaging (PET/OI). This adverse influence of anionic charges could be in part compensated by a higher valency of peptide multimerization. However, it remains unknown whether this adverse effect of anionic charges is limited to peptide multimers or if it is also found or even more pronounced when GRPR-specific peptide monomers are dually labeled with fluorescent dye and chelating agent/radionuclide. Moreover, it would be important to know if this effect is limited to GRPR-specific agents only or if these observations also apply to other dually labeled peptides binding to other receptor types. To address these questions, we synthesized hybrid labels, comprising a chelator, different fluorescent dyes carrying different net charges and a functional group for bioconjugation and introduced them into different peptides, specifically targeting the GRPR, the melanocortin-1 receptor (MC1R) and integrin αvβ3. The synthesized conjugates were evaluated with regard to their chemical, radiochemical, photophysical and receptor affinity properties. It was found that neither the 68Ga-radiolabeling nor the fluorescence characteristics of the dyes were altered by the conjugation of the MIUs to the peptides. Further, it was confirmed that the net number of anionic charges has a negative effect on the GRPR-binding affinity of the GRPR-targeting MIU-peptide monomer conjugates and that this same effect was also found to the same extent for the other receptor systems studied.
Collapse
|
9
|
Hübner R, Paretzki A, von Kiedrowski V, Maspero M, Cheng X, Davarci G, Braun D, Damerow H, Judmann B, Filippou V, Dallanoce C, Schirrmacher R, Wängler B, Wängler C. PESIN Conjugates for Multimodal Imaging: Can Multimerization Compensate Charge Influences on Cell Binding Properties? A Case Study. Pharmaceuticals (Basel) 2021; 14:ph14060531. [PMID: 34199635 PMCID: PMC8226452 DOI: 10.3390/ph14060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
- Correspondence: (R.H.); (C.W.)
| | - Alexa Paretzki
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Marco Maspero
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Xia Cheng
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Güllü Davarci
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Diana Braun
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Helen Damerow
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
| | - Benedikt Judmann
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Vasileios Filippou
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Correspondence: (R.H.); (C.W.)
| |
Collapse
|
10
|
Pretze M, van der Meulen N, Wängler C, Schibli R, Wängler B. Targeted 64
Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. J Labelled Comp Radiopharm 2019; 62:471-482. [DOI: 10.1002/jlcr.3736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Nick P. van der Meulen
- Laboratory of Radiochemistry (LRC), Center of Radiopharmaceutical Sciences; PSI; Villigen Switzerland
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Roger Schibli
- Laboratory of Radiochemistry (LRC), Center of Radiopharmaceutical Sciences; PSI; Villigen Switzerland
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
11
|
Sinnes JP, Nagel J, Waldron BP, Maina T, Nock BA, Bergmann RK, Ullrich M, Pietzsch J, Bachmann M, Baum RP, Rösch F. Instant kit preparation of 68Ga-radiopharmaceuticals via the hybrid chelator DATA: clinical translation of [ 68Ga]Ga-DATA-TOC. EJNMMI Res 2019; 9:48. [PMID: 31123943 PMCID: PMC6533321 DOI: 10.1186/s13550-019-0516-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/06/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose The widespread use of 68Ga for positron emission tomography (PET) relies on the development of radiopharmaceutical precursors that can be radiolabelled and dispensed in a simple, quick, and convenient manner. The DATA (6-amino-1,4-diazapine-triacetate) scaffold represents a novel hybrid chelator architecture possessing both cyclic and acyclic character that may allow for facile access to 68Ga-labelled tracers in the clinic. We report the first bifunctional DATA chelator conjugated to [Tyr3]octreotide (TOC), a somatostatin subtype 2 receptor (SST2)-targeting vector for imaging and functional characterisation of SSTR2 expressing tumours. Methods The radiopharmaceutical precursor, DATA-TOC, was synthesised as previously described and used to complex natGa(III) and 68Ga(III). Competition binding assays of [natGa]Ga-DATA-TOC or [natGa]Ga-DOTA-TOC against [125I-Tyr25]LTT-SS28 were conducted in membranes of HEK293 cells transfected to stably express one of the hSST2,3,5 receptor subtypes (HEK293-hSST2/3/5 cells). First in vivo studies were performed in female NMRI-nude mice bearing SST2-positive mouse phaeochromocytoma mCherry (MPC-mCherry) tumours to compare the in vivo SST2-specific tumour-targeting of [68Ga]Ga-DATA-TOC and its overall pharmacokinetics versus the [68Ga]Ga-DOTA-TOC reference. A direct comparison of [68Ga]Ga-DATA-TOC with the well-established PET radiotracer [68Ga]Ga-DOTA-TOC was additionally performed in a 46-year-old male patient with a well-differentiated NET (neuroendocrine tumour), representing the first in human administration of [68Ga]Ga-DATA-TOC. Results DATA-TOC was labelled with 68Ga with a radiolabelling efficiency of > 95% in less than 10 min at ambient temperature. A molar activity up to 35 MBq/nmol was achieved. The hSST2-affinities of [natGa]Ga-DATA-TOC and [natGa]Ga-DOTA-TOC were found similar with only sub-nanomolar differences in the respective IC50 values. In mice, [68Ga]Ga-DATA-TOC was able to visualise the tumour lesions, showing standardised uptake values (SUVs) similar to [68Ga]Ga-DOTA-TOC. Direct comparison of the two PET tracers in a NET patient revealed very similar tumour uptake for the two 68Ga-radiotracers, but with a higher tumour-to-liver contrast for [68Ga]Ga-DATA-TOC. Conclusion [68Ga]Ga-DATA-TOC was prepared, to a quality appropriate for in vivo use, following a highly efficient kit type process. Furthermore, the novel radiopharmaceutical was comparable or better than [68Ga]Ga-DOTA-TOC in all preclinical tests, achieving a higher tumour-to-liver contrast in a NET-patient. The results illustrate the potential of the DATA-chelator to facilitate the access to and preparation of 68Ga-radiotracers in a routine clinical radiopharmacy setting. Electronic supplementary material The online version of this article (10.1186/s13550-019-0516-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Philippe Sinnes
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Nagel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bradley P Waldron
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES NCSR 'Demokritos', Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES NCSR 'Demokritos', Athens, Greece
| | - Ralf K Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, Universitätsklinikum 'Carl Gustav Carus', UniversitätsKrebsCentrum (UCC), Tumorimmunology, Dresden, Germany.,National Center for Tumor Diseases (NCT), Technische Universität Dresden, Dresden, Germany
| | - Richard P Baum
- Zentralklinik Bad Berka GmbH, Clinic for Molecular Radiotherapy, Bad Berka, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Vall-Sagarra A, Litau S, Decristoforo C, Wängler B, Schirrmacher R, Fricker G, Wängler C. Design, Synthesis, In Vitro, and Initial In Vivo Evaluation of Heterobivalent Peptidic Ligands Targeting Both NPY(Y₁)- and GRP-Receptors-An Improvement for Breast Cancer Imaging? Pharmaceuticals (Basel) 2018; 11:ph11030065. [PMID: 29973529 PMCID: PMC6161111 DOI: 10.3390/ph11030065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
Heterobivalent peptidic ligands (HBPLs), designed to address two different receptors independently, are highly promising tumor imaging agents. For example, breast cancer has been shown to concomitantly and complementarily overexpress the neuropeptide Y receptor subtype 1 (NPY(Y1)R) as well as the gastrin-releasing peptide receptor (GRPR). Thus, radiolabeled HBPLs being able to bind these two receptors should exhibit an improved tumor targeting efficiency compared to monospecific ligands. We developed here such bispecific HBPLs and radiolabeled them with 68Ga, achieving high radiochemical yields, purities, and molar activities. We evaluated the HBPLs and their monospecific reference peptides in vitro regarding stability and uptake into different breast cancer cell lines and found that the 68Ga-HBPLs were efficiently taken up via the GRPR. We also performed in vivo PET/CT imaging and ex vivo biodistribution studies in T-47D tumor-bearing mice for the most promising 68Ga-HBPL and compared the results to those obtained for its scrambled analogs. The tumors could easily be visualized by the newly developed 68Ga-HBPL and considerably higher tumor uptakes and tumor-to-background ratios were obtained compared to the scrambled analogs in and ex vivo. These results demonstrate the general feasibility of the approach to use bispecific radioligands for in vivo imaging of breast cancer.
Collapse
Affiliation(s)
- Alicia Vall-Sagarra
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Clemens Decristoforo
- Department of Nuclear Medicine, University Hospital Innsbruck, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ralf Schirrmacher
- Department of Oncology, Division Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany.
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
13
|
Lindner S, Fiedler L, Wängler B, Bartenstein P, Schirrmacher R, Wängler C. Design, synthesis and in vitro evaluation of heterobivalent peptidic radioligands targeting both GRP- and VPAC1-Receptors concomitantly overexpressed on various malignancies – Is the concept feasible? Eur J Med Chem 2018; 155:84-95. [DOI: 10.1016/j.ejmech.2018.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
|
14
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
15
|
Kertész I, Vida A, Nagy G, Emri M, Farkas A, Kis A, Angyal J, Dénes N, Szabó JP, Kovács T, Bai P, Trencsényi G. In Vivo Imaging of Experimental Melanoma Tumors using the Novel Radiotracer 68Ga-NODAGA-Procainamide (PCA). J Cancer 2017; 8:774-785. [PMID: 28382139 PMCID: PMC5381165 DOI: 10.7150/jca.17550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose: The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Methods: Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 (68Ga-NODAGA-PCA). The melanin specificity of 68Ga-NODAGA-PCA was tested in vitro, ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68Ga-NODAGA-PCA and 18FDG tracers. Results: 68Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly (p≤0.01) higher 68Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18FDG and 68Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly (p≤0.05 and p≤0.01) higher using 68Ga-NODAGA-PCA than the 18FDG accumulation. Conclusion: Our novel radiotracer 68Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68Ga-NODAGA-PCA is a suitable diagnostic radiotracer for the detection of melanoma tumors and metastases in vivo.
Collapse
Affiliation(s)
- István Kertész
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - András Vida
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | | | - Miklós Emri
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Antal Farkas
- Department of Urology, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kis
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - János Angyal
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Noémi Dénes
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit P Szabó
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary;; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary;; Research Center for Molecular Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary;; Scanomed LTD, Debrecen, Hungary
| |
Collapse
|
16
|
Hasegawa K, Kawachi E, Uehara Y, Yoshida T, Imaizumi S, Ogawa M, Miura SI, Saku K. Improved 68 Ga-labeling method using ethanol addition: Application to the α-helical peptide DOTA-FAMP. J Labelled Comp Radiopharm 2016; 60:55-61. [PMID: 27925294 DOI: 10.1002/jlcr.3474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 01/10/2023]
Abstract
We examined the 68 Ga labeling of the α-helical peptide, DOTA-FAMP, and evaluated conformational changes during radiolabeling. 68 Ga-DOTA-FAMP is a positron emission tomography probe candidate for atherosclerotic plaques. The labeling yield achieved by Zhernosekov's method (using acetone for 68 Ga purification) was compared with that achieved by the original and 2 modified Mueller's methods (using NaCl solution). Modified method I involves desalting the 68 Ga prior to labeling, and modified method II involves the inclusion of ethanol in the labeling solution. The labeling yield using Zhernosekov's method was 62% ± 5.4%. In comparison, Mueller's original method gave 8.9% ± 1.7%. Modified method I gave a slight improvement of 32% ± 2.1%. Modified method II further increased the yield to 66% ± 3.4%. Conformational changes were determined by circular dichroism spectroscopy, revealing that these differences could be attributed to conformational changes. Heat treatment affects peptide conformation, which leads to aggregation and decreases the labeling yield. Mueller's method is simpler, but harsh conditions preclude its application to biomolecules. To suppress aggregation, we included a desalting process and added ethanol in the labeling solution. These changes significantly improved the labeling yield. Before use for imaging, conformational changes of biomolecules during radiolabeling should be evaluated by circular dichroism spectroscopy to ensure the homogeneity of the labeled product.
Collapse
Affiliation(s)
- Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Emi Kawachi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Tsuyoshi Yoshida
- Department of Radiology, Koga Hospital 21, Kurume, Fukuoka, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masahiro Ogawa
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keijiro Saku
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
17
|
Evaluation of a Flexible NOTA-RGD Kit Solution Using Gallium-68 from Different 68Ge/68Ga-Generators: Pharmacokinetics and Biodistribution in Nonhuman Primates and Demonstration of Solitary Pulmonary Nodule Imaging in Humans. Mol Imaging Biol 2016; 19:469-482. [DOI: 10.1007/s11307-016-1014-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Ogawa K. Biocomplexes in radiochemistry. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Seemann J, Waldron B, Parker D, Roesch F. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharm Chem 2016; 1:4. [PMID: 29564381 PMCID: PMC5843802 DOI: 10.1186/s41181-016-0007-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background The widespread acceptance and application of 68Ga-PET depends on our ability to develop radiopharmaceuticals that can be prepared in a convenient and suitable manner. A kit-type labelling protocol provides such characteristics and requires chelators that can be radiolabelled under exceptionally mild conditions. Recently the DATA chelators have been introduced that fulfil these requirements. In continuing their development, the synthesis and radiolabelling of the first DATA bifunctional chelator (BFC) and peptide conjugate are described. Results A BFC derived from the DATA ligand (2,2'-(6-((carboxymethyl)amino)-1,4-diazepane-1,4-diyl)diacetic acid) has been synthesised in five steps from simple building blocks, with an overall yield of 8 %. DATAM5-3tBu (5-[1,4-Bis-tert-butoxycarbonylmethyl-6-(tert-butoxycarbonylmethyl-methyl-amino)-[1, 4]diazepan-6-yl]-pentanoic acid) has been coupled to [DPhe1][Tyr3]-octreotide (TOC) and the resulting peptide conjugate (DATATOC) radiolabelled with purified 68Ga derived via four different 68Ge/68Ga generator post-processing (PP) methods. The stability and lipophilicity of the radiotracer have been assessed and a kit-type formulation for radiolabelling evaluated. 68Ga-DATATOC has been prepared with a > 95 % radiochemical yield (RCY) within 1 (fractionated and acetone-PP) and 10 min (ethanol- and NaCl-PP) at 23 °C (pH 4.2-4.9, 13 nmol). The radiolabelled peptide is stable in the presence of human serum. Lipophilicity of 68Ga-DATATOC was calculated as logP = -3.2 ± 0.3, with a HPLC retention time (tR = 10.4 min) similar to 68Ga-DOTATOC (logP = -2.9 ± 0.4, tR = 10.3 min). Kit-type labelling from a lyophilised solid using acetone-PP based labelling achieves > 95 % RCY in 10 min at 23 °C. Conclusions The favourable labelling properties of the DATA chelators have been retained for DATATOC. High radiochemical purity can be achieved at 23 °C in less than 1 min and from a kit formulation. The speed, reliability, ease, flexibility and simplicity with which 68Ga-DATATOC can be prepared makes it a very attractive alternative to current standards.
Collapse
Affiliation(s)
- Johanna Seemann
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Bradley Waldron
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE UK
| | - Frank Roesch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| |
Collapse
|
20
|
Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Satpati D, Arjun C, Krishnamohan R, Samuel G, Banerjee S. (68) Ga-labeled Ciprofloxacin Conjugates as Radiotracers for Targeting Bacterial Infection. Chem Biol Drug Des 2015; 87:680-6. [PMID: 26647765 DOI: 10.1111/cbdd.12701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/08/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023]
Abstract
With an aim of developing a bacteria-specific molecular imaging agent, ciprofloxacin has been modified with a propylamine spacer and linked to two common bifunctional chelators, p-SCN-Bz-DOTA and p-SCN-Bz-NOTA. The two ciprofloxacin conjugates, CP-PA-SCN-Bz-DOTA (1) and CP-PA-SCN-Bz-NOTA (2), were radiolabeled with (68)Ga in >90% radiochemical yield and were moderately stable in vitro for 4 h. The efficacy of (68)Ga-1 and (68)Ga-2 has been investigated in vitro in Staphylococcus aureus cells where bacterial binding of the radiotracers (0.9-1.0% for (68)Ga-1 and 1.6-2.3% for (68)Ga-2) could not be blocked in the presence of excess amount of unlabeled ciprofloxacin. However, uptake of radiotracers in live bacterial cells was significantly higher (p < 0.01) than that in non-viable bacterial cells. Bacterial infection targeting efficacy of (68)Ga-1 and (68)Ga-2 was tested in vivo in rats where the infected muscle-to-inflamed muscle ((68)Ga-1: 2 ± 0.2, (68)Ga-2: 3 ± 0.5) and infected muscle-to-normal muscle ratios ((68)Ga-1: 3 ± 0.4, (68)Ga-2: 6.6 ± 0.8) were found to improve at 120 min p.i. Fast blood clearance and renal excretion was observed for both the radiotracers. The two (68)Ga-labeled infection targeting radiotracers could discriminate between bacterial infection and inflammation in vivo and are worthy of further detailed investigation as infection imaging agents at the clinical level.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Center, Mumbai, India
| | - Chanda Arjun
- Board of Radiation and Isotope Technology, Navi Mumbai, India
| | | | - Grace Samuel
- Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Center, Mumbai, India
| |
Collapse
|
22
|
Development of a Single Vial Kit Solution for Radiolabeling of 68Ga-DKFZ-PSMA-11 and Its Performance in Prostate Cancer Patients. Molecules 2015; 20:14860-78. [PMID: 26287143 PMCID: PMC6332425 DOI: 10.3390/molecules200814860] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost all prostate cancers. By playing such a universal role in the disease, PSMA provides a target for diagnostic imaging of prostate cancer using positron emission tomography/computed tomography (PET/CT). The PSMA-targeting ligand Glu-NH-CO-NH-Lys-(Ahx)-HBED-CC (DKFZ-PSMA-11) has superior imaging properties and allows for highly-specific complexation of the generator-based radioisotope Gallium-68 (68Ga). However, only module-based radiolabeling procedures are currently available. This study intended to develop a single vial kit solution to radiolabel buffered DKFZ-PSMA-11 with 68Ga. A 68Ge/68Ga-generator was utilized to yield 68GaCl3 and major aspects of the kit development were assessed, such as radiolabeling performance, quality assurance, and stability. The final product was injected into patients with prostate cancer for PET/CT imaging and the kit performance was evaluated on the basis of the expected biodistribution, lesion detection, and dose optimization. Kits containing 5 nmol DKFZ-PSMA-11 showed rapid, quantitative 68Ga-complexation and all quality measurements met the release criteria for human application. The increased precursor content did not compromise the ability of 68Ga-DKFZ-PSMA-11 PET/CT to detect primary prostate cancer and its advanced lymphatic- and metastatic lesions. The 68Ga-DKFZ-PSMA-11 kit is a robust, ready-to-use diagnostic agent in prostate cancer with high diagnostic performance.
Collapse
|
23
|
18F-Labeled wild-type annexin V: comparison of random and site-selective radiolabeling methods. Amino Acids 2015; 48:65-74. [DOI: 10.1007/s00726-015-2068-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
24
|
Hyafil F, Tran-Dinh A, Burg S, Leygnac S, Louedec L, Milliner M, Ben Azzouna R, Reshef A, Ben Ami M, Meilhac O, Le Guludec D. Detection of Apoptotic Cells in a Rabbit Model with Atherosclerosis-Like Lesions Using the Positron Emission Tomography Radiotracer [
18
F]ML-10. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Fabien Hyafil
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Alexy Tran-Dinh
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Samuel Burg
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Sébastien Leygnac
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Liliane Louedec
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Milan Milliner
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Rana Ben Azzouna
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Ayelet Reshef
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Miri Ben Ami
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Olivier Meilhac
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| | - Dominique Le Guludec
- From the Department of Nuclear Medicine and Inserm Unité Mixte de Recherche 1148, Bichat University Hospital, Département Hospitalo-Universitaire FIRE, Assistance Publique – Hôpitaux de Paris, Université Paris Diderot-Paris 7, Paris, France; Aposense Ltd, Petach-Tikva, Israel; and Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, CYROI, Saint-Denis, France
| |
Collapse
|
25
|
Bacher L, Fischer G, Litau S, Schirrmacher R, Wängler B, Baller M, Wängler C. Improving the stability of peptidic radiotracers by the introduction of artificial scaffolds: which structure element is most useful? J Labelled Comp Radiopharm 2015. [PMID: 26219022 DOI: 10.1002/jlcr.3315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peptidic radiotracers are highly potent substances for the specific in vivo imaging of various biological targets with Single Photon Emission Computed Tomography and Positron Emission Tomography. However, some radiolabeled peptides such as bombesin analogs were shown to exhibit only a limited stability, hampering a successful target visualization. One option to positively influence the stability of radiolabeled peptides is the introduction of certain artificial molecular scaffolds. In order to comparatively assess the influence of different structure elements on the stability of radiolabeled peptides and to identify those structure elements being most useful for peptide radiotracer stabilization, several monomeric and dimeric bombesin derivatives were synthesized, exhibiting differing molecular designs and the chelator NODAGA for (68) Ga-labeling. The radiolabeled peptides were evaluated regarding their in vitro stability in human serum to determine the influence of the introduced molecular scaffolds on the peptides' serum stabilities. The results of the evaluations showed that the introduction of scaffold structures and the overall molecular design have a substantial impact on the stabilities of the resulting peptidic radiotracers. But besides some general trends found using certain scaffold structures, the obtained results point to the necessity to empirically assess their influence on stability for each susceptible peptidic radiotracer individually.
Collapse
Affiliation(s)
- Lisa Bacher
- University of Applied Sciences, Campus Zweibrücken, Zweibrücken, Germany.,Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Gabriel Fischer
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division Oncological Imaging, University of Alberta, Edmonton, Canada
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Marko Baller
- University of Applied Sciences, Campus Zweibrücken, Zweibrücken, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Fischer G, Lindner S, Litau S, Schirrmacher R, Wängler B, Wängler C. Next Step toward Optimization of GRP Receptor Avidities: Determination of the Minimal Distance between BBN(7-14) Units in Peptide Homodimers. Bioconjug Chem 2015. [PMID: 26200324 DOI: 10.1021/acs.bioconjchem.5b00362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the gastrin releasing peptide receptor (GRPR) is overexpressed on several tumor types, it represents a promising target for the specific in vivo imaging of these tumors using positron emission tomography (PET). We were able to show that PESIN-based peptide multimers can result in substantially higher GRPR avidities, highly advantageous in vivo pharmacokinetics and tumor imaging properties compared to the respective monomers. However, the minimal distance between the peptidic binders, resulting in the lowest possible system entropy while enabling a concomitant GRPR binding and thus optimized receptor avidities, has not been determined so far. Thus, we aimed here to identify the minimal distance between two GRPR-binding peptides in order to provide the basis for the development of highly avid GRPR-specific PET imaging agents. We therefore synthesized dimers of the GRPR-binding bombesin analogue BBN(7-14) on a dendritic scaffold, exhibiting different distances between both peptide binders. The homodimers were further modified with the chelator NODAGA, radiolabeled with (68)Ga, and evaluated in vitro regarding their GRPR avidity. We found that the most potent of the newly developed radioligands exhibits GRPR avidity twice as high as the most potent reference compound known so far, and that a minimal distance of 62 bond lengths between both peptidic binders within the homodimer can result in concomitant peptide binding and optimal GRPR avidities. These findings answer the question as to what molecular design should be chosen when aiming at the development of highly avid homobivalent peptidic ligands addressing the GRPR.
Collapse
Affiliation(s)
| | - S Lindner
- §Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | | | - R Schirrmacher
- ∥Department of Oncology, Division Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
27
|
Wu Y, Hao G, Ramezani S, Saha D, Zhao D, Sun X, Sherry AD. [(68) Ga]-HP-DO3A-nitroimidazole: a promising agent for PET detection of tumor hypoxia. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:465-72. [PMID: 26122548 DOI: 10.1002/cmmi.1649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/14/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
The goal of this study is to evaluate a new (68) Ga-based imaging agent for detecting tumor hypoxia using positron emission tomography (PET). The new hypoxia targeting agent reported here, [(68) Ga]-HP-DO3A-nitroimidazole ([(68) Ga]-HP-DO3A-NI), was constructed by linking a nitroimidazole moiety with the macrocyclic ligand component of ProHance®, HP-DO3A. The hypoxia targeting capability of this agent was evaluated in A549 lung cancer cells in vitro and in SCID mice bearing subcutaneous A549 tumor xenografts. The cellular uptake assays showed that significantly more [(68) Ga]-HP-DO3A-NI accumulates in hypoxic tumor cells at 30, 60 and 120 min than in the same cells exposed to 21% O2 . The agent also accumulated in hypoxic tumors in vivo to give a tumor/muscle ratio (T/M) of 5.0 ± 1.2 (n = 3) as measured by PET at 2 h post-injection (p.i.). This was further confirmed by ex vivo biodistribution data. In addition, [(68) Ga]-HP-DO3A-NI displayed very favorable pharmacokinetic properties, as it was cleared largely through the kidneys with little to no accumulation in liver, heart or lung (%ID/g < 0.5%) at 2 h p.i. The specificity of the agent for hypoxic tissues was further validated in a comparative study with a control compound, [(68) Ga]-HP-DO3A, which lacks the nitroimidazole moiety, and by PET imaging of tumor-bearing mice breathing air versus 100% O2 . Given the commercial availability of cGMP (68) Ge/(68) Ga generators and the ease of (68) Ga labeling, the new agent could potentially be widely applied for imaging tumor hypoxia prior to radiation therapy.
Collapse
Affiliation(s)
- Yunkou Wu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guiyang Hao
- Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Saleh Ramezani
- Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawen Zhao
- Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Deparatment of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
28
|
Seemann J, Waldron BP, Roesch F, Parker D. Approaching 'Kit-Type' Labelling with (68)Ga: The DATA Chelators. ChemMedChem 2015; 10:1019-26. [PMID: 25899500 DOI: 10.1002/cmdc.201500092] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Indexed: 12/26/2022]
Abstract
The DATA chelators are a novel class of tri-anionic ligands based on 6-amino-1,4-diazepine-triacetic acid, which have been introduced recently for the chelation of (68)Ga. Compared with macrocyclic chelators based on the cyclen scaffold (i.e., DOTA, DO3A, and DO2A derivatives), DATA chelators undergo quantitative radiolabelling more rapidly and under milder conditions. In this study, a systematic evaluation of the labelling of four DATA chelators--DATA(M), DATA(P), DATA(Ph), and DATA(PPh)--with (68)Ga is presented. The results highlight the extraordinary potential of this new class of chelators for application in molecular imaging using (68)Ga positron emission tomography (PET).
Collapse
Affiliation(s)
- Johanna Seemann
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany).
| | - Bradley P Waldron
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany).,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK)
| | - Frank Roesch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany)
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK)
| |
Collapse
|
29
|
Lehner S, Todica A, Vanchev Y, Uebleis C, Wang H, Herrler T, Wängler C, Cumming P, Böning G, Franz WM, Bartenstein P, Hacker M, Brunner S. In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography. Mol Imaging 2015; 13. [PMID: 25249170 DOI: 10.2310/7290.2014.00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[68Ga]Annexin A5 positron emission tomography (PET) reveals the externalization of phosphatidylserine as a surrogate marker for apoptosis. We tested this technique for therapy monitoring in a murine model of myocardial infarction (MI) including parathyroid hormone (PTH) treatment. MI was induced in mice, and they were assigned to the saline or the PTH group. On day 2, they received [68Ga]annexin A5 PET or histofluorescence TUNEL staining. Mice had 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-PET examinations on days 6 and 30 for calculation of the left ventricular ejection fraction and infarct area. [68Ga]Annexin A5 uptake was 7.4 ± 1.3 %ID/g within the infarction for the controls and 4.5 ± 1.9 %ID/g for the PTH group (p = .013). TUNEL staining revealed significantly more apoptotic cells in the infarct area on day 2 in the controls (64 ± 9%) compared to the treatment group (52 ± 4%; p = .045). FDG-PET revealed a significant decrease in infarct size in the treatment group and an increase in the controls. Examinations of left ventricular ejection fraction on days 6 and 30 did not reveal treatment effects. [68Ga]Annexin A5 PET can detect the effects of PTH treatment as a marker of apoptosis 2 days after MI; ex vivo examination confirmed significant rescue of myocardiocytes. FDG-PET showed a small but significant reduction in infarct size but no functional improvement.
Collapse
|
30
|
Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015; 5:559-82. [PMID: 25825597 PMCID: PMC4377726 DOI: 10.7150/thno.11548] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.
Collapse
|
31
|
Máté G, Kertész I, Enyedi KN, Mező G, Angyal J, Vasas N, Kis A, Szabó É, Emri M, Bíró T, Galuska L, Trencsényi G. In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer (68)Ga-NOTA-c(NGR). Eur J Pharm Sci 2015; 69:61-71. [PMID: 25592229 DOI: 10.1016/j.ejps.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Aminopeptidase N (APN/CD13) plays an important role in tumor neoangiogenic process and the development of metastases. Furthermore, it may serve as a potential target for cancer diagnosis and therapy. Previous studies have already shown that asparagine-glycine-arginine (NGR) peptides specifically bind to APN/CD13. The aim of the study was to synthesize and investigate the APN/CD13 specificity of a novel (68)Ga-labeled NOTA-c(NGR) molecule in vivo using miniPET. METHODS c[KNGRE]-NH2 peptide was conjugated with p-SCN-Bn-NOTA and was labeled with Ga-68 ((68)Ga-NOTA-c(NGR)). Orthotopic and heterotopic transplanted mesoblastic nephroma (NeDe) bearing Fischer-344 rats were prepared, on which biodistribution studies and miniPET scans were performed for both (68)Ga-NOTA-c(NGR) and ανβ3 integrin selective (68)Ga-NODAGA-[c(RGD)]2 tracers. APN/CD13 receptor expression of NeDe tumors and metastases was analyzed by western blot. RESULTS (68)Ga-NOTA-c(NGR) was produced with high specific activity (5.13-5.92GBq/μmol) and with excellent radiochemical purity (95%<), at all cases. Biodistribution studies in normal rats showed that uptake of the (68)Ga-NOTA-c(NGR) was significantly (p⩽0.05) lower in abdominal organs in comparison with (68)Ga-NODAGA-[c(RGD)]2. Both radiotracers were mainly excreted from the kidney. In NeDe tumor bearing rats higher (68)Ga-NOTA-c(NGR) accumulation was found in the tumors than that of the (68)Ga-NODAGA-[c(RGD)]2. Using orthotopic transplantation, metastases were developed which showed specific (68)Ga-NOTA-c(NGR) uptake. Western blot analysis confirmed the presence of APN/CD13 expression in NeDe tumors and metastases. CONCLUSION Our novel radiotracer (68)Ga-NOTA-c(NGR) showed specific binding to the APN/CD13 expressed ortho- and heterotopic transplanted NeDe tumors. Therefore, (68)Ga-NOTA-c(NGR) is a suitable tracer for the detection of APN/CD13 positive tumors and metastases in vivo.
Collapse
Affiliation(s)
- Gábor Máté
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - István Kertész
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - János Angyal
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Nikolett Vasas
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kis
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Éva Szabó
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Miklós Emri
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Tamás Bíró
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Galuska
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Hungary; Scanomed LTD, Debrecen, Hungary.
| |
Collapse
|
32
|
Todica A, Zacherl MJ, Wang H, Böning G, Jansen NL, Wängler C, Bartenstein P, Kreissl MC, Hacker M, Brunner S, Lehner S. In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [⁶⁸Ga]Annexin A5 and [¹⁸F]FDG PET. J Nucl Cardiol 2014; 21:1191-9. [PMID: 25189144 DOI: 10.1007/s12350-014-9987-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Several studies substantiate the cardioprotective effects of erythropoietin (EPO). Our goal was to quantify the effects of EPO treatment on the early expression of the apoptosis marker phosphatidylserine as well as on the left ventricular volumes and function by means of small animal PET. METHODS AND RESULTS Myocardial infarction (MI) was induced in C57BL/6 mice. Animals were assigned to saline or EPO groups and underwent Annexin PET (day 2) and gated FDG PET (days 6 and 30). Annexin uptake was significantly higher in the infarction than in remote myocardium, with no differences between treatment groups. Infarct size showed a slight decrease in the EPO group and a slight increase in the controls, which did not reach statistical significance. Follow-up analyses revealed a significant increase of end-diastolic and end-systolic volumes in the EPO group, in which a stable left ventricular ejection fraction (LVEF) was maintained. CONCLUSION We find that deleterious effects of EPO can outweigh cardioprotective effects. The present EPO treatment did not significantly reduce apoptosis after MI, but seemingly provoked significant myocardial dilation while maintaining a stable LVEF. Molecular mechanisms of EPO treatment may need further elucidation to optimize therapy regimens.
Collapse
Affiliation(s)
- Andrei Todica
- Department of Nuclear Medicine, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Radiolabeled apoptosis imaging agents for early detection of response to therapy. ScientificWorldJournal 2014; 2014:732603. [PMID: 25383382 PMCID: PMC4212626 DOI: 10.1155/2014/732603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Since apoptosis plays an important role in maintaining homeostasis and is associated with responses to therapy, molecular imaging of apoptotic cells could be useful for early detection of therapeutic effects, particularly in oncology. Radiolabeled annexin V compounds are the hallmark in apoptosis imaging in vivo. These compounds are reviewed from the genesis of apoptosis (cell death) imaging agents up to recent years. They have some disadvantages, including slow clearance and immunogenicity, because they are protein-based imaging agents. For this reason, several studies have been conducted in recent years to develop low molecule apoptosis imaging agents. In this review, radiolabeled phosphatidylserine targeted peptides, radiolabeled bis(zinc(II)-dipicolylamine) complex, radiolabeled 5-fluoropentyl-2-methyl-malonic acid (ML-10), caspase-3 activity imaging agents, radiolabeled duramycin, and radiolabeled phosphonium cation are reviewed as promising low-molecular-weight apoptosis imaging agents.
Collapse
|
34
|
Knapp FF, Pillai MRA, Osso JA, Dash A. Re-emergence of the important role of radionuclide generators to provide diagnostic and therapeutic radionuclides to meet future research and clinical demands. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3642-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
¹⁸F-labeled silicon-based fluoride acceptors: potential opportunities for novel positron emitting radiopharmaceuticals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:454503. [PMID: 25157357 PMCID: PMC4135131 DOI: 10.1155/2014/454503] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These "nonclassical" labeling methodologies based on silicon-, boron-, and aluminium-(18)F chemistry deviate from commonplace bonding of an [(18)F]fluorine atom ((18)F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. METHODOLOGY The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. SCOPE OF REVIEW A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. CONCLUSIONS The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on (18)F(-) leaving group substitutions have the potential to become a valuable addition to radiochemistry.
Collapse
|
36
|
Lindner S, Michler C, Wängler B, Bartenstein P, Fischer G, Schirrmacher R, Wängler C. PESIN Multimerization Improves Receptor Avidities and in Vivo Tumor Targeting Properties to GRPR-Overexpressing Tumors. Bioconjug Chem 2014; 25:489-500. [DOI: 10.1021/bc4004662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simon Lindner
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Christina Michler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | | | - Peter Bartenstein
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Gabriel Fischer
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Ralf Schirrmacher
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carmen Wängler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
37
|
Zeglis BM, Houghton JL, Evans MJ, Viola-Villegas N, Lewis JS. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg Chem 2014; 53:1880-99. [PMID: 24313747 PMCID: PMC4151561 DOI: 10.1021/ic401607z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: (64)Cu-ATSM, (68)Ga-DOTATOC, (89)Zr-transferrin, (99m)Tc-sestamibi, and (99m)Tc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jacob L. Houghton
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Michael J. Evans
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Nerissa Viola-Villegas
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jason S. Lewis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| |
Collapse
|
38
|
Todica A, Brunner S, Böning G, Lehner S, Nekolla SG, Wildgruber M, Übleis C, Wängler C, Sauter M, Klingel K, Cumming P, Bartenstein P, Schirrmacher R, Franz WM, Hacker M. [68Ga]-albumin-PET in the monitoring of left ventricular function in murine models of ischemic and dilated cardiomyopathy: comparison with cardiac MRI. Mol Imaging Biol 2014; 15:441-9. [PMID: 23408338 DOI: 10.1007/s11307-013-0618-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study is to evaluate left ventricular functional parameters in healthy mice and in different murine models of cardiomyopathy with the novel blood pool (BP) positron emission tomography (PET) tracer [68Ga]-albumin. PROCEDURES ECG-gated microPET examinations were obtained in healthy mice, and mice with dilative (DCM) and ischemic cardiomyopathy (ICM) using the novel BP tracer [68Ga]-albumin (AlbBP), as well as [18F]-FDG microPET. Cine-magnetic resonance imaging (MRI) examination performed on a clinical 1.5-T MRI provided the reference standard measurements. RESULTS When considering the combined group of healthy controls, DCM and ICM AlbBP-PET significantly overestimated the magnitudes of EDV (AlbBP, 181±86 μl; cine-MRI, 125±80 μl; P<0.001) and ESV (AlbBP, 136±92 μl; cine-MRI, 96±77 μl; P<0.001), whereas the EF (AlbBP, 31±16%; cine-MRI, 33±21%; P=0.910) matched closely to cine-MRI results, as did findings with [18F]-FDG. High correlations were found between the measured cardiac parameters (EDV: R=0.978, ESV: R=0.989, and LVEF: R=0.992). CONCLUSIONS Measuring left ventricular function in mice with [68Ga]-albumin BP PET is feasible and showed a high correlation compared to cine-MRI, which was used as a reference standard.
Collapse
Affiliation(s)
- Andrei Todica
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Klinikum Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Development of Single Vial Kits for Preparation of 68Ga-Labelled Peptides for PET Imaging of Neuroendocrine Tumours. Mol Imaging Biol 2014; 16:550-7. [DOI: 10.1007/s11307-014-0719-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Baur B, Andreolli E, Al-Momani E, Malik N, Machulla HJ, Reske SN, Solbach C. Synthesis and labelling of Df-DUPA-Pep with gallium-68 and zirconium-89 as new PSMA ligands. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-013-2876-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Todica A, Böning G, Lehner S, Weidl E, Cumming P, Wängler C, Nekolla SG, Schwaiger M, Bartenstein P, Schirrmacher R, Hacker M. Positron emission tomography in the assessment of left ventricular function in healthy rats: a comparison of four imaging methods. J Nucl Cardiol 2013; 20:262-74. [PMID: 23255241 DOI: 10.1007/s12350-012-9663-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To measure left ventricular (LV) function parameters in heart of healthy rats by three different positron emission tomography (PET) imaging techniques and by magnetic resonance imaging (MRI). METHODS ECG-gated microPET examinations were obtained in seven healthy rats with 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) for calculation of LV-function from the blood-pool phase of the dynamic recording (FDGBP), and also from the later myocardial uptake (FDGMyo). On subsequent days, we re-measured LV-function using the novel blood-pool tracer (68)Ga-albumin (AlbBP) and again by FDG (FDGMyo2) in one setting. Cine-MRI examination provided the reference standard measurement. RESULTS The mean LV ejection fractions (LVEF) were 56 ± 3 (FDGBP), 55 ± 3 (FDGMyo), 56 ± 3 (FDGMyo2), 57 ± 3 (AlbBP), and 57 ± 2 (MRI). There were good to excellent correlations found between the LVEF-values as compared to MRI reference standard for FDGBP (r = 0.71), FDGMyo (r = 0.86) and AlbBP (r = 0.88). Both of the blood-pool methods significantly overestimated the magnitudes of end-diastolic-volume and end-systolic-volume, whereas FDGMyo matched closely to the MRI reference standard. There was no significant bias for both blood-pool methods and a minor negative bias for FDGMyo regarding the LV ejection fraction (LVEF) when compared to cine-MRI results. There was no significant difference between the means of FDGMyo and FDGMyo2 (P = .50). CONCLUSIONS Relative to reference standard MRI measurements of LVEF, there was excellent agreement between PET-based measurements, notably for the novel blood-pool tracer (68)Ga-albumin.
Collapse
Affiliation(s)
- Andrei Todica
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wängler C, Herbach N, Herrler T, Böning G, Laubender RP, Cumming P, Schirrmacher R, Franz W, Hacker M. Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sebastian Lehner
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Andrei Todica
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Stefan Brunner
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Christopher Uebleis
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Hao Wang
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Carmen Wängler
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Nadja Herbach
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Tanja Herrler
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Guido Böning
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Rüdiger Paul Laubender
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Paul Cumming
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Ralf Schirrmacher
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Wolfgang Franz
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| | - Marcus Hacker
- From the Departments of Nuclear Medicine, Cardiology, Experimental Surgery, Institute of Veterinary Pathology, Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany; McConnell Brain Imaging Centre, McGill University, Montreal, PQ
| |
Collapse
|
43
|
Protein labeling with the labeling precursor [18F]SiFA-SH for positron emission tomography. Nat Protoc 2012; 7:1964-9. [DOI: 10.1038/nprot.2012.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Nagatsu K, Suzuki H, Fukada M, Minegishi K, Tsuji A, Fukumura T. An alumina ceramic target vessel for the remote production of metallic radionuclides by in situ target dissolution. Nucl Med Biol 2012; 39:1281-5. [PMID: 22727820 DOI: 10.1016/j.nucmedbio.2012.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/10/2012] [Accepted: 05/19/2012] [Indexed: 11/26/2022]
Abstract
INTRODUCTION As the use of metallic radionuclides increases, so does the demand for a simple production method. In this study, we demonstrated an in situ target processing concept for automated metallic radionuclide production without the use of any robotic device. METHODS An alumina ceramic vessel for a vertical irradiation system was designed and developed. The ceramic vessel was evaluated by the production of Zr-89 using an yttrium powder target. The irradiated Y was dissolved remotely in HCl in the ceramic vessel and transferred as a solution to a hotcell through a Teflon tube. The crude Zr-89 was then purified by an automated apparatus. The Zr-89 was eluted with 100 μL of oxalic acid (solution) as the final product. RESULTS The ceramic vessel gave a sufficient yield of Zr-89 (57±11MBq/μAh), showed good operability, and could be reused up to 10 times. With nominal irradiation (10μA×2h) in ~90 μL, the product (~940MBq) was obtained with >99.9% radionuclidic purity. CONCLUSION The combination of the ceramic vessel and vertical irradiation has great potential for the remote production of various metallic radionuclides.
Collapse
Affiliation(s)
- Kotaro Nagatsu
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Zlatopolskiy BD, Kandler R, Mottaghy FM, Neumaier B. C-(4-[18F]fluorophenyl)-N-phenyl nitrone: A novel 18F-labeled building block for metal free [3+2]cycloaddition. Appl Radiat Isot 2011; 70:184-92. [PMID: 21945016 DOI: 10.1016/j.apradiso.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/19/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Radiofluorination via [3+2]-nitrone-alkene cycloaddition was studied using the model reaction between (18)F-labeled C-(4-fluorophenyl)-N-phenyl nitrone ([(18)F]1) and substituted maleimides 2a-c. [(18)F]1 was prepared in RCY of 73.6±5.8% and radiochemical purity of >95%. Cycloaddition of [(18)F]1 to 2a in toluene at 80°C and in EtOH at 110°C gave the respective isoxazolidine [(18)F]5a in >80% RCY at 10min reaction time. Reaction between [(18)F]1 and 2b, c also went smoothly to afford the respective cycloaddition products in high radiochemical yields.
Collapse
Affiliation(s)
- Boris D Zlatopolskiy
- Max Planck Institute for Neurological Research, Gleueler Straße 50, 50931 Cologne, Germany
| | | | | | | |
Collapse
|
46
|
Berry DJ, Ma Y, Ballinger JR, Tavaré R, Koers A, Sunassee K, Zhou T, Nawaz S, Mullen GED, Hider RC, Blower PJ. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun (Camb) 2011; 47:7068-70. [PMID: 21623436 PMCID: PMC3929899 DOI: 10.1039/c1cc12123e] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration.
Collapse
Affiliation(s)
- David J. Berry
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Yongmin Ma
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
- King’s College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London, SE1 9NH, UK
| | - James R. Ballinger
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Richard Tavaré
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Alexander Koers
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Kavitha Sunassee
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Tao Zhou
- King’s College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Saima Nawaz
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Gregory E. D. Mullen
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Robert C. Hider
- King’s College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Philip J. Blower
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|