1
|
Champagne A, Chebra I, Jain P, Ringuette Goulet C, Lauzier A, Guyon A, Neveu B, Pouliot F. An Extracellular Matrix Overlay Model for Bioluminescence Microscopy to Measure Single-Cell Heterogeneous Responses to Antiandrogens in Prostate Cancer Cells. BIOSENSORS 2024; 14:175. [PMID: 38667168 PMCID: PMC11048191 DOI: 10.3390/bios14040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.
Collapse
Affiliation(s)
- Audrey Champagne
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Imene Chebra
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Pallavi Jain
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Cassandra Ringuette Goulet
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Annie Lauzier
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Antoine Guyon
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Bertrand Neveu
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| |
Collapse
|
2
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Development of a Transcriptional Amplification System Based on the PEG3 Promoter to Target Androgen Receptor-Positive and -Negative Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20010216. [PMID: 30626088 PMCID: PMC6337121 DOI: 10.3390/ijms20010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Localized prostate cancer (PCa) is often curable, whereas metastatic disease treated by castration inevitably progresses toward castration-resistant PCa (CRPC). Most CRPC treatments target androgen receptor (AR) signaling. However, not all CRPC cells rely on AR activity for survival and proliferation. With advances in immunotherapy and fluid biopsies for cancer management, expression systems specific for both AR-positive and -negative PCa are required for virus-based vaccines and cell imaging. To target both AR-responsive and non-responsive cells, we developed a three-step transcriptional amplification (3STA) system based on the progression elevated gene-3 (PEG3) promoter named PEG3AP1-3STA. Notably, we report on different genetic modifications that significantly improved PEG3 promoter's strength in PCa cells. Adenoviruses incorporating PEG3 promoter with and without transcriptional amplification systems were generated. The potential of PEG3AP1-3STA to target PCa cells was then evaluated in vitro and in vivo in androgen-responsive and non-responsive PCa cell lines. PEG3AP1-3STA was shown to be active in all PCa cell lines and not regulated by androgens, and its activity was amplified 97-fold compared to that of a non-amplified promoter. The PEG3AP1-3STA system can thus be used to target advanced AR+ and AR- cells for imaging or immunovirotherapy in advanced PCa.
Collapse
|
6
|
Neveu B, Jain P, Têtu B, Wu L, Fradet Y, Pouliot F. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer. Oncotarget 2016; 7:1300-10. [PMID: 26594800 PMCID: PMC4811461 DOI: 10.18632/oncotarget.6360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and cloned into type 5 adenovirus. PCA3-3STA activity was highly specific for PCa cells, ranging between 98.7- and 108.0-fold higher than that for benign primary prostate epithelial or non-PCa cells, respectively. In human PCa xenografts, PCA3-3STA displayed robust bioluminescent signals at levels that are sufficient to translate to positron emission tomography (PET)-based reporter imaging. Remarkably, when freshly isolated benign or cancerous prostate biopsies were infected with PCA3-3STA, the optical signal produced from primary PCa biopsies was significantly higher than from benign prostate biopsies (4.4-fold, p < 0.0001). PCA3-3STA therefore represents a PCa-specific expression system with the potential to target, with high accuracy, primary or metastatic PCa epithelial cells for imaging, vaccines, or gene therapy.
Collapse
Affiliation(s)
- Bertrand Neveu
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Pallavi Jain
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Bernard Têtu
- Département de Biochimie et Pathologie, Faculté de Médecine, Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yves Fradet
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Frédéric Pouliot
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
7
|
Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular Imaging of Prostate Cancer. Radiographics 2015; 36:142-59. [PMID: 26587888 DOI: 10.1148/rg.2016150059] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the most common noncutaneous malignancy among men in the Western world. The natural history and clinical course of prostate cancer are markedly diverse, ranging from small indolent intraprostatic lesions to highly aggressive disseminated disease. An understanding of this biologic heterogeneity is considered a necessary requisite in the quest for the adoption of precise and personalized management strategies. Molecular imaging offers the potential for noninvasive assessment of the biologic interactions underpinning prostate carcinogenesis. Currently, numerous molecular imaging probes are in clinical use or undergoing preclinical or clinical evaluation. These probes can be divided into those that image increased cell metabolism, those that target prostate cancer-specific membrane proteins and receptor molecules, and those that bind to the bone matrix adjacent to metastases to bone. The increased metabolism and vascular changes in prostate cancer cells can be evaluated with radiolabeled analogs of choline, acetate, glucose, amino acids, and nucleotides. The androgen receptor, prostate-specific membrane antigen, and gastrin-releasing peptide receptor (ie, bombesin) are overexpressed in prostate cancer and can be targeted by specific radiolabeled imaging probes. Because metastatic prostate cancer cells induce osteoblastic signaling pathways of adjacent bone tissue, bone-seeking radiotracers are sensitive tools for the detection of metastases to bone. Knowledge about the underlying biologic processes responsible for the phenotypes associated with the different stages of prostate cancer allows an appropriate choice of methods and helps avoid pitfalls.
Collapse
Affiliation(s)
- Andreas G Wibmer
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| | - Irene A Burger
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| | - Evis Sala
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| | - Hedvig Hricak
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| | - Wolfgang A Weber
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| | - Hebert Alberto Vargas
- From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (A.G.W., E.S., H.H., W.A.W., H.A.V.); and Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (I.A.B.)
| |
Collapse
|
8
|
Liu L, Rogers BE, Aladyshkina N, Cheng B, Lokitz SJ, Curiel DT, Mathis JM. Construction and Radiolabeling of Adenovirus Variants that Incorporate Human Metallothionein into Protein IX for Analysis of Biodistribution. Mol Imaging 2014; 13. [DOI: 10.2310/7290.2014.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lei Liu
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - Buck E. Rogers
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - Natalia Aladyshkina
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - Bing Cheng
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - Stephen J. Lokitz
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - David T. Curiel
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| | - J. Michael Mathis
- From the Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Center for Molecular Imaging and Therapy, Biomedical Research Foundation of Northwest Louisiana, Shreveport, LA; and LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Baton Rouge, LA
| |
Collapse
|
9
|
Dmitriev IP, Kashentseva EA, Kim KH, Matthews QL, Krieger SS, Parry JJ, Nguyen KN, Akers WJ, Achilefu S, Rogers BE, Alvarez RD, Curiel DT. Monitoring of biodistribution and persistence of conditionally replicative adenovirus in a murine model of ovarian cancer using capsid-incorporated mCherry and expression of human somatostatin receptor subtype 2 gene. Mol Imaging 2014; 13:7290.2014.00024. [PMID: 25249483 DOI: 10.2310/7290.2014.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.
Collapse
|
10
|
Lu Q, Ye X, Liu F, Zhao Y, Qin J, Liang M, Fang C, Chen HZ. Homologous recombination-based adenovirus vector system for tumor cell-specific gene delivery. Cancer Biol Ther 2013; 14:728-35. [PMID: 23792576 DOI: 10.4161/cbt.25090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cancer gene therapy requires tumor-specific delivery and expression of a transgene to maximize antitumor efficacy and minimize side effects. In this study, we developed a new tumor-targeting, homologous recombination-based adenovirus vector system, HRAVS. HRAVS is composed of two adenovirus vectors, Ad.CMV.IR containing reverse sequence (IR) and a CMV promoter and Ad.IR.EGFP comprising the report gene EGFP and IR. For improved viral DNA replication and transgene expression, the E1a gene was added to HRAVS to generate the enhanced HRAVS, EHRAVS, which consists of Ad.CMV.IR and Ad.IR.EGFP/E1a. The optimal vector composition ratio of Ad.CMV.IR to Ad.IR.EGFP or Ad.IR.EGFP/E1a was identified as 30:70 based on EGFP expression efficiency in tumor cells. The transgene expression of HRAVS and EHRAVS was efficiently and specifically activated in tumor cells only and not in normal cells. Moreover, compared with HRAVS, EHRAVS infection led to higher virus yields and transgene expression and higher toxicity to tumor cells, and these results could be related to the involvement of E1a genes. The results in present study suggest the need for in vivo antitumor study using these new dual-Ad vector systems based on the homologous recombination.
Collapse
Affiliation(s)
- Qin Lu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pouliot F, Sato M, Jiang ZK, Huyn S, Karanikolas BD, Wu L. A molecular imaging system based on both transcriptional and genomic amplification to detect prostate cancer cells in vivo. Mol Ther 2012; 21:554-60. [PMID: 23247102 DOI: 10.1038/mt.2012.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An imaging modality that can accurately discern prostate cancer (PCa) foci would be useful to detect PCa early or guide treatment. We have engineered numerous adenoviral vectors (Ads) to carry out reporter gene-based imaging using specific promoters to express a potent transcriptional activator, which in turn activates the reporter gene in PCa. This two-step transcriptional amplification (TSTA) method can boost promoters' activity, while maintaining cell specificity. Here, we examined a dual TSTA (DTSTA) approach, which utilizes TSTA not only to express the imaging reporter, but also to direct viral genome replication of a conditionally replicating Ad (CRAd) to further augment the expression levels of the reporter gene by genomic amplification supported in trans by coadministered CRAd. In vitro studies showed up to 50-fold increase of the reporter genome by DTSTA. Compared with TSTA reporter alone, DTSTA application exhibited a 25-fold increase in imaging signal in PCa xenografts. DTSTA approach is also beneficial for a combination of two TSTA Ads with distinct promoters, although amplification is observed only when TSTA-CRAd can replicate. Consequently, the DTSTA approach is a hybrid method of transcriptional and genomic augmentation that can provide higher level reporter gene expression potentially with a lower dose of viral administration.
Collapse
Affiliation(s)
- Frédéric Pouliot
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE Recent advances in the fundamental understanding of the complex biology of prostate cancer have provided an increasing number of potential targets for imaging and treatment. The imaging evaluation of prostate cancer needs to be tailored to the various phases of this remarkably heterogeneous disease. CONCLUSION In this article, I review the current state of affairs on a range of PET radiotracers for potential use in the imaging evaluation of men with prostate cancer.
Collapse
|
13
|
Bhang HEC, Pomper MG. Cancer imaging: Gene transcription-based imaging and therapeutic systems. Int J Biochem Cell Biol 2012; 44:684-9. [PMID: 22349219 PMCID: PMC3324783 DOI: 10.1016/j.biocel.2012.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022]
Abstract
Molecular-genetic imaging of cancer is in its infancy. Over the past decade gene reporter systems have been optimized in preclinical models and some have found their way into the clinic. The search is on to find the best combination of gene delivery vehicle and reporter imaging system that can be translated safely and quickly. The goal is to have a combination that can detect a wide variety of cancers with high sensitivity and specificity in a way that rivals the current clinical standard, positron emission tomography with [(18)F]fluorodeoxyglucose. To do so will require systemic delivery of reporter genes for the detection of micrometastases, and a nontoxic vector, whether viral or based on nanotechnology, to gain widespread acceptance by the oncology community. Merger of molecular-genetic imaging with gene therapy, a strategy that has been employed in the past, will likely be necessary for such imaging to reach widespread clinical use.
Collapse
Affiliation(s)
- Hyo-eun C Bhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | |
Collapse
|
14
|
Jiang ZK, Sato M, Wu L. Chapter five--The development of transcription-regulated adenoviral vectors with high cancer-selective imaging capabilities. Adv Cancer Res 2012; 115:115-46. [PMID: 23021244 DOI: 10.1016/b978-0-12-398342-8.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A clear benefit of molecular imaging is to enable noninvasive, repetitive monitoring of intrinsic signals within tumor cells as a means to identify the lesions as malignant or to assess the ability of treatment to perturb key pathways within the tumor cells. Due to the promising utility of molecular imaging in oncology, preclinical research to refine molecular imaging techniques in small animals is a blossoming field. We will first discuss the several imaging modalities such as fluorescent imaging, bioluminescence imaging, and positron emission tomography that are now commonly used in small animal settings. The indirect imaging approach, which can be adapted to a wide range of imaging reporter genes, is a useful platform to develop molecular imaging. In particular, reporter gene-based imaging is well suited for transcriptional-targeted imaging that can be delivered by recombinant adenoviral vectors. In this review, we will summarize transcription-regulated strategies used in adenoviral-mediated molecular imaging to visualize metastasis and monitor oncolytic therapy in preclinical models.
Collapse
Affiliation(s)
- Ziyue Karen Jiang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|