1
|
Liepe K. Pros and Cons of Alpha versus Beta Bone Seeking Agents in the Treatment of Cancer Pain. World J Nucl Med 2023; 22:255-256. [PMID: 38152106 PMCID: PMC10751140 DOI: 10.1055/s-0043-1774731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Affiliation(s)
- Knut Liepe
- Department of Nuclear Medicine, Klinikum Frankfurt (Oder), Brandenburg, Germany
| |
Collapse
|
2
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
3
|
Fundamentals of Rhenium-188 Radiopharmaceutical Chemistry. Molecules 2023; 28:molecules28031487. [PMID: 36771153 PMCID: PMC9921938 DOI: 10.3390/molecules28031487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The β- emitter, rhenium-188 (188Re), has long been recognized as an attractive candidate for targeted cancer radionuclide therapy (TRNT). This transition metal shares chemical similarities with its congener element technetium, whose nuclear isomer technetium-99m (99mTc) is the current workhorse of diagnostic nuclear medicine. The differences between these two elements have a significant impact on the radiolabelling methods and should always receive critical attention. This review aims to highlight what needs to be considered to design a successful radiopharmaceutical incorporating 118Re. Some of the most effective strategies for preparing therapeutic radiopharmaceuticals with 188Re are illustrated and rationalized using the concept of the inorganic functional group (core) and a simple ligand field theoretical model combined with a qualitative definition of frontiers orbitals. Of special interest are the Re(V) oxo and Re(V) nitrido functional groups. Suitable ligands for binding to these cores are discussed, successful clinical applications are summarized, and a prediction of viable future applications is presented. Rhenium-188 decays through the emission of a high energy beta particle (2.12 MeV max energy) and a half-life of 16.9 h. An ideal biological target would therefore be a high-capacity target site (transporters, potential gradients, tumour microenvironment) with less emphasis on saturable targets such as overexpressed receptors on smaller metastases.
Collapse
|
4
|
Moghaddam-Banaem L, Deilami-Nezhad L, Sadeghi M, Jalilifar M. DEVELOPMENT AND ESTIMATION OF HUMAN DOSIMETRY OF A NEW 47SC-RISEDRONATE FOR RADIOPHARMACEUTICAL APPLICATION. RADIATION PROTECTION DOSIMETRY 2022; 198:1483-1494. [PMID: 36156088 DOI: 10.1093/rpd/ncac190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Bisphosphonate risedronate (2-(3-pyridinyl)-1-hydroxyethane diphosphonic acid) was radiolabeled with scandium-47 (47Sc) as potential therapeutic radiopharmaceutical for skeletal metastases. Its time-dependent biodistribution in mice was measured and its human dosimetry was derived. The labelling process was performed at 95 °C for 30 min. The stability of the radio-conjugate was tested in human serum at 37 °C and its biodistribution was studied in balb/c mice. The radiochemical yield of ≥90% was obtained corresponding to a specific activity of 277 MBq/mg. The radio-conjugate showed good stability in human serum up to 48 h. A high bone uptake by 48 h post-injection was achieved, which suggests that 47Sc-risedronate may be therapeutically beneficial for the palliation of painful bone metastasis. The estimated absorbed dose coefficient and the time-integrated activity coefficient (ã (rs, TD)) in the bone were 1.35 mGy/MBq and 31.04 (Bq-h/Bq), respectively. The absorbed doses to non-osseous normal organs were much lower than that to the bone.
Collapse
Affiliation(s)
- Leila Moghaddam-Banaem
- Department of Isotopic separation, Nuclear Material and fuel School, Nuclear Science and Technology Research Institute, P.O. Box: 14155-1339, Tehran, Iran
| | - Leila Deilami-Nezhad
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-6183, Tehran, Iran
| | - Mostafa Jalilifar
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-6183, Tehran, Iran
| |
Collapse
|
5
|
Uccelli L, Martini P, Urso L, Ghirardi T, Marvelli L, Cittanti C, Carnevale A, Giganti M, Bartolomei M, Boschi A. Rhenium Radioisotopes for Medicine, a Focus on Production and Applications. Molecules 2022; 27:5283. [PMID: 36014521 PMCID: PMC9412410 DOI: 10.3390/molecules27165283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed.
Collapse
Affiliation(s)
- Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Teresa Ghirardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Duan H, Iagaru A, Aparici CM. Radiotheranostics - Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics 2022; 6:103-117. [PMID: 34976584 PMCID: PMC8671964 DOI: 10.7150/ntno.64141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
'See what you treat and treat what you see, at a molecular level', could be the motto of theranostics. The concept implies diagnosis (imaging) and treatment of cells (usually cancer) using the same molecule, thus guaranteeing a targeted cytotoxic approach of the imaged tumor cells while sparing healthy tissues. As the brilliant late Sam Gambhir would say, the imaging agent acts like a 'molecular spy' and reveals where the tumoral cells are located and the extent of disease burden (diagnosis). For treatment, the same 'molecular spy' docks to the same tumor cells, this time delivering cytotoxic doses of radiation (treatment). This duality represents the concept of a 'theranostic pair', which follows the scope and fundamental principles of targeted precision and personalized medicine. Although the term theranostic was noted in medical literature in the early 2000s, the principle is not at all new to nuclear medicine. The first example of theranostic dates back to 1941 when Dr. Saul Hertz first applied radioiodine for radionuclide treatment of thyroid cells in patients with hyperthyroidism. Ever since, theranostics has been an integral element of nuclear medicine and molecular imaging. The more we understand tumor biology and molecular pathology of carcinogenesis, including specific mutations and receptor expression profiles, the more specific these 'molecular spies' can be developed for diagnostic molecular imaging and subsequent radionuclide targeted therapy (radiotheranostics). The appropriate selection of the diagnostic and therapeutic radionuclide for the 'theranostic pair' is critical and takes into account not only the type of cytotoxic radiation emission, but also the linear energy transfer (LET), and the physical half-lives. Advances in radiochemistry and radiopharmacy with new radiolabeling techniques and chelators are revolutionizing the field. The landscape of cytotoxic systemic radionuclide treatments has dramatically expanded through the past decades thanks to all these advancements. This article discusses present and promising future theranostic applications for various types of diseases such as thyroid disorders, neuroendocrine tumors (NET), pediatric malignancies, and prostate cancer (PC), and provides an outlook for future perspectives.
Collapse
Affiliation(s)
| | | | - Carina Mari Aparici
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Bollampally N, Shukla J, Mittal BR, Sood A, Mohanty M, Kapoor R, Vatsa R, Satapathy S, Chakravarty R, Chakraborty S, Dash AK. Efficacy and safety of 177Lu-DOTMP in palliative treatment of symptomatic skeletal metastases: a prospective study. Nucl Med Commun 2021; 42:964-971. [PMID: 33852531 DOI: 10.1097/mnm.0000000000001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Bone-seeking radiopharmaceutical 177Lu-DOTMP with favorable pharmacokinetics in the preclinical studies has been evaluated for its role in reducing bone pain and improving quality of life (QOL) in patients with symptomatic skeletal metastases. METHOD Patients with painful widespread skeletal metastases documented on 99mTc-MDP bone scintigraphy were intravenously administered 37 MBq/kg of 177Lu-DOTMP. Visual analogue score (VAS), analgesic score, European Cooperative Group of Oncology (ECOG) and the European Organization of Research and Treatment of Cancer QLQ-C30 of all the patients were assessed at baseline and posttherapy follow-up. Adverse effects were graded according to NCI-CTCAE V 5.0. RESULTS Twenty-seven patients with painful widespread skeletal metastases (men 18; median age 61 years; range: 18-81) were studied for their responses as complete response, partial response, minimal response, no response and pain progression based on VAS and analgesic score. Overall response was seen in 77.8% of patients (complete, partial and minimal in 29.6, 33.3 and 14.8%, respectively) with significant improvement in median VAS and mean analgesic score at 2 months posttherapy from baseline (P < 0.001). The best response was seen in patients with breast cancer (100%) followed by prostate cancer (81%) and lung cancer (28%). Improvement in QOL was noted in 40% of patients, with change in ECOG score from 3.07 ± 0.67 at baseline to 2.6 ± 0.9 at 2 months posttherapy. Grade 2/3 anemia, grade 1/2 leukopenia and grade 1/3 thrombocytopenia were seen in 37, 11.1 and 18.5% patients respectively in the follow-up. CONCLUSION 177Lu-DOTMP appears to be efficacious treatment for bone pain palliation with improvement in QOL though less effective in patients with lung cancer. The patients had transient mild-moderate hematotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Rakesh Kapoor
- Department of Radiotherpay, Postgraduate Institute of Medical Education and Research, Chandigarh
| | | | | | - Rubel Chakravarty
- Radipharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Ashutosh K Dash
- Radipharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
8
|
Yu H, Yang H, Shi E, Tang W. Development and Clinical Application of Phosphorus-Containing Drugs. MEDICINE IN DRUG DISCOVERY 2020; 8:100063. [PMID: 32864606 PMCID: PMC7445155 DOI: 10.1016/j.medidd.2020.100063] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphorus-containing drugs belong to an important class of therapeutic agents and are widely applied in daily clinical practices. Structurally, the phosphorus-containing drugs can be classified into phosphotriesters, phosphonates, phosphinates, phosphine oxides, phosphoric amides, bisphosphonates, phosphoric anhydrides, and others; functionally, they are often designed as prodrugs with improved selectivity and bioavailability, reduced side effects and toxicity, or biomolecule analogues with endogenous materials and antagonistic endoenzyme supplements. This review summarized the phosphorus-containing drugs currently on the market as well as a few promising molecules at clinical studies, with particular emphasis on their structural features, biological mechanism, and indications.
Collapse
Affiliation(s)
- Hanxiao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - He Yang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
9
|
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol 2020; 90-91:55-68. [PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
Collapse
Affiliation(s)
- Hun Yee Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Molly McKenzie
- School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohamad Nazri Md Shah
- Department of Biomedical Imaging, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia
| | - Alan Christopher Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
10
|
Targeted Palliative Radionuclide Therapy for Metastatic Bone Pain. J Clin Med 2020; 9:jcm9082622. [PMID: 32806765 PMCID: PMC7464823 DOI: 10.3390/jcm9082622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis develops in multiple malignancies with a wide range of incidence. The presence of multiple bone metastases, leading to a multitude of complications and poorer prognosis. The corresponding refractory bone pain is still a challenging issue managed through multidisciplinary approaches to enhance the quality of life. Radiopharmaceuticals are mainly used in the latest courses of the disease. Bone-pain palliation with easy-to-administer radionuclides offers advantages, including simultaneous treatment of multiple metastatic foci, the repeatability and also the combination with other therapies. Several β¯- and α-emitters as well as pharmaceuticals, from the very first [89Sr]strontium-dichloride to recently introduced [223Ra]radium-dichloride, are investigated to identify an optimum agent. In addition, the combination of bone-seeking radiopharmaceuticals with chemotherapy or radiotherapy has been employed to enhance the outcome. Radiopharmaceuticals demonstrate an acceptable response rate in pain relief. Nevertheless, survival benefits have been documented in only a limited number of studies. In this review, we provide an overview of bone-seeking radiopharmaceuticals used for bone-pain palliation, their effectiveness and toxicity, as well as the results of the combination with other therapies. Bone-pain palliation with radiopharmaceuticals has been employed for eight decades. However, there are still new aspects yet to be established.
Collapse
|
11
|
Spine and Non-spine Bone Metastases - Current Controversies and Future Direction. Clin Oncol (R Coll Radiol) 2020; 32:728-744. [PMID: 32747153 DOI: 10.1016/j.clon.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Bone is a common site of metastases in advanced cancers. The main symptom is pain, which increases morbidity and reduces quality of life. The treatment of bone metastases needs a multidisciplinary approach, with the main aim of relieving pain and improving quality of life. Apart from systemic anticancer therapy (hormonal therapy, chemotherapy or immunotherapy), there are several therapeutic options available to achieve palliation, including analgesics, surgery, local radiotherapy, bone-seeking radioisotopes and bone-modifying agents. Long-term use of non-steroidal analgesics and opiates is associated with significant side-effects, and tachyphylaxis. Radiotherapy is effective mainly in localised disease sites. Bone-targeting radionuclides are useful in patients with multiple metastatic lesions. Bone-modifying agents are beneficial in reducing skeletal-related events. This overview focuses on the role of surgery, including minimally invasive treatments, conventional radiotherapy in spinal and non-spinal bone metastases, bone-targeting radionuclides and bone-modifying agents in achieving palliation. We present the clinical data and their associated toxicity. Recent advances are also discussed.
Collapse
|
12
|
Klenner MA, Darwish T, Fraser BH, Massi M, Pascali G. Labeled Rhenium Complexes: Radiofluorination, α-MSH Cyclization, and Deuterium Substitutions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Tamim Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- Prince of Wales Hospital, Randwick, New South Wales, Australia 2031
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales, Australia 2052
| |
Collapse
|
13
|
Palliation of Metastatic Bone Pain with Radiolabeled Phosphonates. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Palmedo H. Radionuclide Therapy of Bone Metastases with Radium-223 Chloride in Prostate Cancer Patients. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Appraisement of 186/188Re-HEDP, a new compositional radiopharmaceutical. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a “theranostic pair.” Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University Hospital Angers, France.,Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France
| | - François Hindré
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,ICO (Institut de Cancérologie de l'Ouest) Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France.,ENSCR (Ecole Nationale Supérieure de Chimie de Rennes) Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - F F Russ Knapp
- Emeritus Medical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
17
|
Dash A, Das T, Knapp FFR. Targeted Radionuclide Therapy of Painful Bone Metastases: Past Developments, Current Status, Recent Advances and Future Directions. Curr Med Chem 2019; 27:3187-3249. [PMID: 30714520 DOI: 10.2174/0929867326666190201142814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Bone pain arising from secondary skeletal malignancy constitutes one of the most common types of chronic pain among patients with cancer which can lead to rapid deterioration of the quality of life. Radionuclide therapy using bone-seeking radiopharmaceuticals based on the concept of localization of the agent at bone metastases sites to deliver focal cytotoxic levels of radiation emerged as an effective treatment modality for the palliation of symptomatic bone metastases. Bone-seeking radiopharmaceuticals not only provide palliative benefit but also improve clinical outcomes in terms of overall and progression-free survival. There is a steadily expanding list of therapeutic radionuclides which are used or can potentially be used in either ionic form or in combination with carrier molecules for the management of bone metastases. This article offers a narrative review of the armamentarium of bone-targeting radiopharmaceuticals based on currently approved investigational and potentially useful radionuclides and examines their efficacy for the treatment of painful skeletal metastases. In addition, the article also highlights the processes, opportunities, and challenges involved in the development of bone-seeking radiopharmaceuticals. Radium-223 is the first agent in this class to show an overall survival advantage in Castration-Resistant Prostate Cancer (CRPC) patients with bone metastases. This review summarizes recent advances, current clinical practice using radiopharmaceuticals for bone pain palliation, and the expected future prospects in this field.
Collapse
Affiliation(s)
- Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Furn F Russ Knapp
- Medical Isotopes Program, Isotope Development Group, MS 6229, Bldg. 4501, Oak Ridge National Laboratory, PO Box 2008, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| |
Collapse
|
18
|
Bouman-Wammes EW, de Klerk JMH, Bloemendal HJ, Van Dodewaard-de Jong JM, Lange R, Ter Heine R, Verheul HMW, Van den Eertwegh AJM. Bone-Targeting Radiopharmaceuticals as Monotherapy or Combined With Chemotherapy in Patients With Castration-Resistant Prostate Cancer Metastatic to Bone. Clin Genitourin Cancer 2018; 17:e281-e292. [PMID: 30555024 DOI: 10.1016/j.clgc.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/04/2018] [Accepted: 11/14/2018] [Indexed: 11/25/2022]
Abstract
In patients with metastatic castration-resistant prostate cancer, bone is the most common site for metastases. Because of their osteoblastic character, these lesions are very suitable for treatment with bone-seeking radiopharmaceuticals (RPs). Nowadays, radium-223-chloride is the only RP with a proven benefit in overall survival, whereas the β-emitting RPs are used for pain palliation. In the past, many trials that investigated RPs alone, or in combination with chemotherapy have been performed. Because of different designs, characteristics of included patients, and chemotherapeutical and RP regimens, interpretation of the promising data and positioning of RPs in the treatment of metastatic prostate cancer has become difficult. In this review, we provide an overview of the existing data per RP with a focus on the different RPs in combination with chemotherapy. Furthermore, we aim to clarify the benefits on pain response and quality of life. Finally, we focus on the optimal timing and use of biomarkers in the treatment of patients with castration-resistant prostate cancer with RPs.
Collapse
Affiliation(s)
- Esther W Bouman-Wammes
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - John M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, UMC Utrech, Utrech, The Netherlands; Department of Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands
| | | | - Rogier Lange
- Department of Hospital Pharmacy, Meander Medical Center, Amersfoort, The Netherlands
| | - Rob Ter Heine
- Department of Hospital Pharmacy, Radboud UMC, Nijmegen, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Radionuclide Therapy for Bone Metastases: Utility of Scintigraphy and PET Imaging for Treatment Planning. PET Clin 2018; 13:491-503. [PMID: 30219184 DOI: 10.1016/j.cpet.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The skeleton is a common site for cancer metastases. Bone metastases are a major cause of morbidity and mortality and associated with pain, pathologic fractures, spinal cord compression, and decreased survival. Various radionuclides have been used for pain therapy. Recently, an α-emitter has been shown to improve overall survival of patients with bone metastases from castration-resistant prostate cancer and was approved as a therapeutic agent. The aim of this article is to provide an overview regarding state of the art radionuclide therapy options for bone metastases, with focus on the role of PET imaging in therapy planning.
Collapse
|
20
|
Jiang W, Ulmert D, Simons BW, Abou DS, Thorek DLJ. The impact of age on radium-223 distribution and an evaluation of molecular imaging surrogates. Nucl Med Biol 2018; 62-63:1-8. [PMID: 29800797 PMCID: PMC6054814 DOI: 10.1016/j.nucmedbio.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Radium-223 dichloride is the first alpha-particle emitting therapeutic agent approved by FDA and EMA for bone metastatic castration-resistant prostate cancer. We studied its age-dependent biodistribution in mice, and compared it with [99mTc]Tc-MDP and [18F]NaF aiming to identify a potential imaging surrogate to predict [223Ra]RaCl2 whole-body localization. METHODS Male C57Bl/6 mice dosed with [223Ra]RaCl2 were sacrificed at different time points to explore [223Ra]RaCl2 whole-body distribution. In another experiment, mice at different ages were dosed with [223Ra]RaCl2 to evaluate the aging impact. Finally, [99mTc]Tc-MDP and [18F]NaF were administered to mice, and we compared their biodistributions with [223Ra]RaCl2. Detailed micro-localization of each tracer was visualized using autoradiography and histochemical staining. RESULTS [223Ra]RaCl2 uptake in bone was rapid and stable. We observed persistent localization at bone epiphyses, as well as the red pulp of the spleen, while its uptake in most soft tissues cleared within 24 h. [223Ra]RaCl2 distribution in soft tissues is similar in all age groups tested, while bone activity significantly decreased with aging. Although the diagnostic tracers cleared much faster from soft tissues than the therapeutic radionuclide, [99mTc]Tc-MDP and [18F]NaF both co-localized with [223Ra]RaCl2 in the skeletal compartment. CONCLUSIONS Radium-223 localization to the bone is dependent on age-varying factors, which implies that radium-223 dosimetry should take patient age into account. [99mTc]Tc-MDP shows a different biodistribution from [223Ra]RaCl2, both in soft tissues and in bone. [18F]NaF presents a high similarity with [223Ra]RaCl2 in skeletal uptake, which validates the potential of [18F]NaF as an imaging surrogate to predict radium-223 radiotherapeutic distribution in bone.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, United States
| | - David Ulmert
- Department of Radiology, Memorial Sloan Kettering Cancer Center, United States
| | - Brian W Simons
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, United States; Department of Urology, Johns Hopkins University School of Medicine, United States
| | - Diane S Abou
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Johns Hopkins University School of Medicine, United States.
| | - Daniel L J Thorek
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Johns Hopkins University School of Medicine, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, United States.
| |
Collapse
|
21
|
Denis-Bacelar AM, Chittenden SJ, Dearnaley DP, Divoli A, O'Sullivan JM, McCready VR, Johnson B, Du Y, Flux GD. Reply to 'Single high dose versus repeated bone-targeted radionuclide therapy'. Eur J Nucl Med Mol Imaging 2018; 45:515-517. [PMID: 29247283 DOI: 10.1007/s00259-017-3902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ana M Denis-Bacelar
- Chemical, Medical and Environmental Science Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK.
| | - Sarah J Chittenden
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK
| | - David P Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK
| | - Antigoni Divoli
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK
| | - Joe M O'Sullivan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - V Ralph McCready
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, BN2 5BE, UK
| | - Bernadette Johnson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK
| | - Yong Du
- Department of Nuclear Medicine and PET/CT, The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Glenn D Flux
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, UK
| |
Collapse
|
22
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
23
|
Liepe K. Single high dose versus repeated bone-targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2017; 44:2144-2145. [PMID: 28861597 DOI: 10.1007/s00259-017-3815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Affiliation(s)
- K Liepe
- Department of Nuclear Medicine, GH Hospital Frankfurt (Oder), Müllroser Chaussee 7, 15236, Frankfurt (Oder), Germany.
| |
Collapse
|
24
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
25
|
Deilami-Nezhad L, Moghaddam-Banaem L, Sadeghi M. Development of bone seeker radiopharmaceuticals by Scandium-47 and estimation of human absorbed dose. Appl Radiat Isot 2017; 129:108-116. [PMID: 28843158 DOI: 10.1016/j.apradiso.2017.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
Abstract
In this study labeling EDTMP (ethylenediamine tetra(methylene phosphonic acid)) and HEDP (Hydroxyethylidene-1, 1-Diphosphonic Acid) as the carrier ligands with Scandium-47 were investigated. The biokinetics of the bone seeking of labeled ligands with Scandium-47 were assessed by measuring the skeletal absorbed dose and then the mice data extrapolated to human absorbed dose and compared with the 186/188Rhenium-HEDP, 153Samarium-EDTMP dosimetry data estimated by other researchers. Because the availability of 47Sc was limited we performed some preliminary studies using 46Sc.
Collapse
Affiliation(s)
- Leila Deilami-Nezhad
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moghaddam-Banaem
- Materials and Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Science, P.O. Box: 14155-6183, Tehran, Iran
| |
Collapse
|
26
|
Picciotto M, Franchina T, Russo A, Ricciardi GRR, Provazza G, Sava S, Baldari S, Caffo O, Adamo V. Emerging role of Radium-223 in the growing therapeutic armamentarium of metastatic castration-resistant prostate cancer. Expert Opin Pharmacother 2017; 18:899-908. [DOI: 10.1080/14656566.2017.1323875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Picciotto
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Giusy Provazza
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Serena Sava
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital, Trento, Italy
| | - Vincenzo Adamo
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
27
|
Lange R, ter Heine R, van Wieringen WN, Tromp AM, Paap M, Bloemendal HJ, de Klerk JMH, Hendrikse NH, Geldof AA. Cytotoxic Effects of the Therapeutic Radionuclide Rhenium-188 Combined with Taxanes in Human Prostate Carcinoma Cell Lines. Cancer Biother Radiopharm 2017; 32:16-23. [PMID: 28118029 DOI: 10.1089/cbr.2016.2129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Rhenium-188-HEDP is an effective radiopharmaceutical for the treatment of painful bone metastases from prostate cancer. The effectiveness of the β-radiation emitted by 188Re might be enhanced by combination with chemotherapy, using the radiosensitization concept. Therefore, the authors investigated the combined treatment of the taxanes, docetaxel and cabazitaxel, with 188Re in prostate carcinoma cell lines. MATERIALS AND METHODS The cytotoxic effects of single and combined treatment with taxanes and 188Re were investigated in three human prostate carcinoma cell lines (PC-3, DU 145, and LNCaP), using the colony-forming assay. The half maximal effective concentration (EC50) of all individual agents was determined. The combined treatment was studied at 0.25, 0.5, 1, 2, and 4 times the EC50 of each agent. The interaction was investigated with a regression model. RESULTS The survival curves showed dose-dependent cell growth inhibition for both the taxanes and 188Re. The regression model showed a good capability of explaining the data. It proved additivity in all combination experiments and confirmed a general trend to a slight subadditive effect. CONCLUSIONS This proof-of-mechanism study exploring radiosensitization by combining 188Re and taxanes showed no synergism, but significant additivity. This encourages the design of in vivo studies. Future research should explore the potential added value of concomitant treatment of bone metastases with chemotherapy and 188Re-HEDP.
Collapse
Affiliation(s)
- Rogier Lange
- 1 Department of Clinical Pharmacy, Meander Medical Center , Amersfoort, The Netherlands
| | - Rob ter Heine
- 2 Department of Pharmacy, Radboud University Medical Center , Nijmegen
| | - Wessel N van Wieringen
- 3 Department of Epidemiology and Biostatistics, VU University Medical Center , Amsterdam, The Netherlands .,4 Department of Mathematics, VU University , Amsterdam, The Netherlands
| | - Adrienne M Tromp
- 5 Department of Pharmaceutical Sciences, Utrecht University , Utrecht, The Netherlands
| | - Mayke Paap
- 5 Department of Pharmaceutical Sciences, Utrecht University , Utrecht, The Netherlands
| | - Haiko J Bloemendal
- 6 Department of Internal Medicine/Medical Oncology, Meander Medical Center , Amersfoort, The Netherlands .,7 Department of Medical Oncology, University Medical Center , Utrecht, The Netherlands
| | - John M H de Klerk
- 8 Department of Nuclear Medicine, Meander Medical Center , Amersfoort, The Netherlands
| | - N Harry Hendrikse
- 9 Department of Clinical Pharmacology and Pharmacy, VU University Medical Center , Amsterdam, The Netherlands .,10 Department of Radiology and Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - Albert A Geldof
- 11 Department of Urology, VU University Medical Center , Amsterdam, The Netherlands .,12 Department of Radiology and Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
28
|
Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis 2016; 34:1-10. [DOI: 10.1007/s10585-016-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
|
29
|
Fischer M, Biersack HJ. Radionuclide therapy of malignant bone lesions. Eur J Nucl Med Mol Imaging 2016; 44:728-729. [PMID: 27942833 DOI: 10.1007/s00259-016-3574-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Affiliation(s)
- M Fischer
- Institut of Radiologie, Strahlentherapie und Nuklearmedizin, Firedrich-Ebert-Str. 50, 34117, Kassel, Germany.
| | - H J Biersack
- Klinik und Poliklinik für Nuklearmedizin, Universität Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| |
Collapse
|
30
|
Maffioli L, Dellavedova L, Florimonte L. Reply by L. Maffioli. Eur J Nucl Med Mol Imaging 2016; 44:730-731. [PMID: 27882397 DOI: 10.1007/s00259-016-3570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Maffioli
- Nuclear Medicine Department, A.S.S.T. Ovest Milanese, Via Papa Giovanni Paolo II, Legnano, Milan, 20025, Italy.
| | - Luca Dellavedova
- Nuclear Medicine Department, A.S.S.T. Ovest Milanese, Via Papa Giovanni Paolo II, Legnano, Milan, 20025, Italy
| | - Luigia Florimonte
- Nuclear Medicine Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milano, 20122, Italy
| |
Collapse
|
31
|
Lange R, Ter Heine R, Knapp RF, de Klerk JMH, Bloemendal HJ, Hendrikse NH. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone 2016; 91:159-79. [PMID: 27496068 DOI: 10.1016/j.bone.2016.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
Abstract
Therapeutic phosphonate-based radiopharmaceuticals radiolabeled with beta, alpha and conversion electron emitting radioisotopes have been investigated for the targeted treatment of painful bone metastases for >35years. We performed a systematic literature search and focused on the pharmaceutical development, preclinical research and early human studies of these radiopharmaceuticals. The characteristics of an ideal bone-targeting therapeutic radiopharmaceutical are presented and compliance with these criteria by the compounds discussed is verified. The importance of both composition and preparation conditions for the stability and biodistribution of several agents is discussed. Very few studies have described the characterization of these products, although knowledge on the molecular structure is important with respect to in vivo behavior. This review discusses a total of 91 phosphonate-based therapeutic radiopharmaceuticals, of which only six agents have progressed to clinical use. Extensive clinical studies have only been described for (186)Re-HEDP, (188)Re-HEDP and (153)Sm-EDTMP. Of these, (153)Sm-EDTMP represents the only compound with worldwide marketing authorization. (177)Lu-EDTMP has recently received approval for clinical use in India. This review illustrates that a thorough understanding of the radiochemistry of these agents is required to design simple and robust preparation and quality control methods, which are needed to fully exploit the potential benefits of these theranostic radiopharmaceuticals. Extensive biodistribution and dosimetry studies are indispensable to provide the portfolios that are required for assessment before human administration is possible. Use of the existing knowledge collected in this review should guide future research efforts and may lead to the approval of new promising agents.
Collapse
Affiliation(s)
- Rogier Lange
- Department of Clinical Pharmacy, Meander Medical Center, Amersfoort, The Netherlands.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Medical Center, Nijmegen, The Netherlands; Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Russ Ff Knapp
- Medical Radioisotope Program, Nuclear Security and Isotope Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
| | - John M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Haiko J Bloemendal
- Department of Internal Medicine/Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands; Department of Medical Oncology, University Medical Center, Utrecht, The Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Lange R, Overbeek F, de Klerk JMH, Pasker-de Jong PCM, van den Berk AM, Ter Heine R, Rodenburg CJ, Kooistra A, Hendrikse NH, Bloemendal HJ. Treatment of painful bone metastases in prostate and breast cancer patients with the therapeutic radiopharmaceutical rhenium-188-HEDP. Clinical benefit in a real-world study. Nuklearmedizin 2016; 55:188-95. [PMID: 27443809 DOI: 10.3413/nukmed-0828-16-05] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
AIM Rhenium-188-HEDP ((188)Re-HEDP) is an effective radiopharmaceutical for the palliative treatment of osteoblastic bone metastases. However, only limited data on its routine use are available and its effect on quality of life (QoL) has not been studied. Therefore, we evaluated the clinical benefit of (188)Re-HEDP in routine clinical care. PATIENTS AND METHODS Prostate or breast cancer patients with painful bone metastases receiving (188)Re-HEDP as a routine clinical procedure were eligible for evaluation. Clinical benefit was assessed in terms of efficacy and toxicity. Pain palliation and QoL were monitored using the visual analogue scale (VAS), corrected for opioid intake, and the EORTC QLQ-C30 Global health status/QoL-scale. Thrombocyte and leukocyte nadirs were used to assess haematological toxicity. RESULTS 45 and 47 patients were evaluable for pain palliation and QoL, respectively. After a single injection of (188)Re-HEDP, the overall pain response rate was 69% and mean VAS-scores decreased relevantly and significantly (p < 0.05). Repeated treatment resulted in similar pain response. The overall QoL response rate was 68% and mean Global health status/QoL-scores increased relevantly and significantly. Haematological side effects were mild and transient. CONCLUSION The clinically relevant response on pain and quality of life and the limited adverse events prove clinical benefit of treatment with (188)Re-HEDP and support its use in routine clinical care. Its effectiveness appears comparable to that of external beam radiotherapy.
Collapse
Affiliation(s)
- Rogier Lange
- Rogier Lange, PharmD, Hospital Pharmacist/Radiopharmacist, Maatweg 3, PO Box 1502, 3800 BM Amersfoort the Netherlands, Tel. +31/33/850-44 33, Fax -23 06,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liepe K, Shinto A. From palliative therapy to prolongation of survival: (223)RaCl2 in the treatment of bone metastases. Ther Adv Med Oncol 2016; 8:294-304. [PMID: 27482288 DOI: 10.1177/1758834016640494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Patients with hormone-refractory prostate cancer often have multiple bone metastases. The resulting bone pain is associated with reduced life quality, increased cost of therapy and impairment of overall survival. Trials with bone-targeting β-emitters have mostly showed an effect on alleviation of bone pain along with prolongation in survival, documented in only a limited number of patients. A randomized phase III trial (ALSYMPCA) using the α-emitter (223)RaCl2 (Xofigo®) showed for the first time, a longer overall survival of 3.6 months in treated patients as a sign of an antitumor effect. The time to first skeletal-related events was also significantly longer in the therapy group compared with placebo. Because of the short range of α-emitter, the bone marrow toxicity of radium therapy is low, and so this radionuclide could also be a candidate for combination with chemotherapy. The elimination of (223)RaCl2 is mainly through the gastrointestinal tract and side effects are mainly in this area. The procedure is similar to treatment with other bone-seeking agents and consists of six administrations of 50 kBq/kg bodyweight Xofigo®, repeated every 4 weeks. At present Xofigo® is only approved for hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Knut Liepe
- Department of Nuclear Medicine, GH Hospital Frankfurt (Oder), Müllroser Chaussee 7, 15236 Frankfurt (Oder), Germany
| | - Ajit Shinto
- Department of Nuclear Medicine, Kovai Medical Centre and Hospital, Coimbatore, India
| |
Collapse
|
34
|
Lange R, Ter Heine R, van der Gronde T, Selles S, de Klerk J, Bloemendal H, Hendrikse H. Applying quality by design principles to the small-scale preparation of the bone-targeting therapeutic radiopharmaceutical rhenium-188-HEDP. Eur J Pharm Sci 2016; 90:96-101. [PMID: 26772897 DOI: 10.1016/j.ejps.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Rhenium-188-HEDP ((188)Re-HEDP) is a therapeutic radiopharmaceutical for treatment of osteoblastic bone metastases. No standard procedure for the preparation of this radiopharmaceutical is available. Preparation conditions may influence the quality and in vivo behaviour of this product. In this study we investigate the effect of critical process parameters on product quality and stability of (188)Re-HEDP. METHODS A stepwise approach was used, based on the quality by design (QbD) concept of the ICH Q8 (Pharmaceutical Development) guideline. Potential critical process conditions were identified. Variables tested were the elution volume, the freshness of the eluate, the reaction temperature and time, and the stability of the product upon dilution and storage. The impact of each variable on radiochemical purity was investigated. The acceptable ranges were established by boundary testing. RESULTS With 2ml eluate, adequate radiochemical purity and stability were found. Nine ml eluate yielded a product that was less stable. Using eluate stored for 24h resulted in acceptable radiochemical purity. Complexation for 30min at room temperature, at 60°C and at 100°C generated appropriate and stable products. A complexation time of 10min at 90°C was too short, whereas heating 60min resulted in products that passed quality control and were stable. Diluting the end product and storage at 32.5°C resulted in notable decomposition. CONCLUSION Two boundary tests, an elution volume of 9ml and a heating time of 10min, yielded products of inadequate quality or stability. The product was found to be instable after dilution or when stored above room temperature. Our findings show that our previously developed preparation method falls well within the proven acceptable ranges. Applying QbD principles is feasible and worthwhile for the small-scale preparation of radiopharmaceuticals.
Collapse
Affiliation(s)
- Rogier Lange
- Department of Clinical Pharmacy, Meander Medical Centre, Amersfoort, The Netherlands.
| | - Rob Ter Heine
- Department of Clinical Pharmacy, Meander Medical Centre, Amersfoort, The Netherlands
| | - Toon van der Gronde
- Department of Clinical Pharmacy, Meander Medical Centre, Amersfoort, The Netherlands
| | - Suzanne Selles
- Department of Clinical Pharmacy, Meander Medical Centre, Amersfoort, The Netherlands
| | - John de Klerk
- Department of Nuclear Medicine, Meander Medical Centre, Amersfoort, The Netherlands
| | - Haiko Bloemendal
- Department of Internal Medicine and Medical Oncology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Harry Hendrikse
- Department of Clinical Pharmacology & Pharmacy, VU University Medical Centre, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Fernandes C, Monteiro S, Belchior A, Marques F, Gano L, Correia JDG, Santos I. Novel (188)Re multi-functional bone-seeking compounds: Synthesis, biological and radiotoxic effects in metastatic breast cancer cells. Nucl Med Biol 2015; 43:150-7. [PMID: 26872439 DOI: 10.1016/j.nucmedbio.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Radiolabeled bisphosphonates (BPs) have been used for bone imaging and delivery of β(-) emitting radionuclides for bone pain palliation. As a β(-) emitter, (188)Re has been considered particularly promising for bone metastases therapy. Aimed at finding innovative bone-seeking agents for systemic radiotherapy of bone metastases, we describe herein novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)], (L=BP-containing chelator), their in vitro and in vivo stability, and their cellular damage in MDAMB231 cells, a metastatic breast cancer cell line. METHODS After synthesis and characterization of the novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)] their radiochemical purity and in vitro stability was assessed by HPLC. In vivo stability and pharmacokinetic profile were evaluated in mice and the radiocytotoxic activity and DNA damage were assessed by MTT assay and by the cytokinesis-block micronucleus (CBMN) assay, respectively. RESULTS Among all complexes, (188)Re3 was obtained with high radiochemical purity (>95%) and high specific activity and presented high in vitro and in vivo stability. Biodistribution studies of (188)Re3 in Balb/c mice showed fast blood clearance, high bone uptake (16.1 ± 3.3% IA/g organ, 1h p.i.) and high bone-to-blood and bone-to-muscle radioactivity ratios, indicating that it is able to deliver radiation to bone in a very selective way. The radiocytotoxic effect elicited by (188)Re3 in the MDAMB231 cells was dependent on its concentration, and was higher than that induced by identical concentrations of [(188)ReO4](-). Additionally, (188)Re3 elicited morphological changes in the cells and induced DNA damage by the increased number of MN observed. CONCLUSION Altogether, our results demonstrate that (188)Re3 could be considered an attractive candidate for further preclinical evaluation for systemic radionuclide therapy of bone metastases considering its ability to deliver radiation to bone in a very selective way and to induce radiation damage.
Collapse
Affiliation(s)
- Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal.
| | - Sofia Monteiro
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), LRS, 2695-066 Bobadela, Portugal
| |
Collapse
|
36
|
Kairemo K, Joensuu T. Radium-223-Dichloride in Castration Resistant Metastatic Prostate Cancer-Preliminary Results of the Response Evaluation Using F-18-Fluoride PET/CT. Diagnostics (Basel) 2015; 5:413-27. [PMID: 26854163 PMCID: PMC4728467 DOI: 10.3390/diagnostics5040413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to evaluate the outcome after Radium-223-dichloride (223RaCl2) treatment of patients with skeletal metastases of castration resistant prostate cancer using whole-body 18F-Fluoride PET/CT. Sodium 18F-fluoride [18F]-NaF PET/CT was performed prior the treatment of 223RaCl2, after the first cycle and after the sixth cycle. The skeletal metastases were analyzed quantitatively using modified PET response evaluation PERCIST criteria. The patients were also analyzed for S-PSA. All ten patients responded in [18F]-NaF scans after 6 cycles, but interim analysis after the 1st cycle did not give additional information about the outcome. The S-PSA decrease correlated with [18F]-NaF response, only 1 patient demonstrated progressive disease, i.e., >25% increase in S-PSA values during 223RaCl2. Our results (although preliminary) suggest that 18F-Fluoride PET/CT is useful in the follow-up of castration resistant prostate cancer with skeletal metastases.
Collapse
Affiliation(s)
- Kalevi Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, Saukonpaadenranta 2, Helsinki FI-00180, Finland.
| | - Timo Joensuu
- Departments of Radiotherapy and Medical Oncology, Docrates Cancer Center, Saukonpaadenranta 2, Helsinki FI-00180, Finland.
| |
Collapse
|
37
|
Rose JN, Crook JM. The role of radiation therapy in the treatment of metastatic castrate-resistant prostate cancer. Ther Adv Urol 2015; 7:135-45. [PMID: 26161144 DOI: 10.1177/1756287215576647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the setting of castrate-resistant prostate cancer, patients present with a variety of symptoms, including bone metastases, spinal cord compression and advanced pelvic disease. Fortunately, a variety of radiotherapeutic options exist for palliation. This article focuses on these options, including both external beam radiotherapy and radiopharmaceuticals.
Collapse
Affiliation(s)
- Jim N Rose
- Department of Radiation Oncology, British Columbia Cancer Agency, Cancer Centre for the Southern Interior, Kelowna, BC, Canada
| | - Juanita M Crook
- Department of Radiation Oncology, Cancer Centre for the Southern Interior, 399 Royal Avenue, Kelowna, BC, Canada V1Y 5L3
| |
Collapse
|
38
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Abi-Ghanem AS, McGrath MA, Jacene HA. Radionuclide Therapy for Osseous Metastases in Prostate Cancer. Semin Nucl Med 2015; 45:66-80. [DOI: 10.1053/j.semnuclmed.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Correa-González L, Arteaga de Murphy C, Pichardo-Romero P, Pedraza-López M, Moreno-García C, Correa-Hernández L. 153Sm-EDTMP for Pain Relief of Bone Metastases from Prostate and Breast Cancer and Other Malignancies. Arch Med Res 2014; 45:301-8. [DOI: 10.1016/j.arcmed.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
41
|
|
42
|
Rhenium-188 production in hospitals, by w-188/re-188 generator, for easy use in radionuclide therapy. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2013; 2013:290750. [PMID: 23653859 PMCID: PMC3638650 DOI: 10.1155/2013/290750] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/13/2013] [Indexed: 11/17/2022]
Abstract
Rhenium-188 (Re-188) is a high energy β-emitting radioisotope obtained from the tungsten-188/rhenium-188 (W-188/Re-188) generator, which has shown utility for a variety of therapeutic applications in nuclear medicine, oncology, and interventional radiology/cardiology. Re-188 decay is accompanied by a 155 keV predominant energy γ-emission, which could be detected by γ-cameras, for imaging, biodistribution, or absorbed radiation dose studies. Its attractive physical properties and its potential low cost associated with a long-lived parent make it an interesting option for clinical use. The setup and daily use of W-188/Re-188 generator in hospital nuclear medicine departments are discussed in detail. The clinical efficacy, for several therapeutic applications, of a variety of Re-188-labeled agents is demonstrated. The high energy of the β-emission of Re-188 is particularly well suited for effective penetration in solid tumours. Its total radiation dose delivered to tissues is comparable to other radionuclides used in therapy. Furthermore, radiation safety and shielding requirements are an important subject of matter. In the case of bone metastases treatment, therapeutic ratios are presented in order to describe the efficacy of Re-188 usage.
Collapse
|
43
|
Shapiro D, Tareen B. Current and emerging treatments in the management of castration-resistant prostate cancer. Expert Rev Anticancer Ther 2013; 12:951-64. [PMID: 22845410 DOI: 10.1586/era.12.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Historically, patients diagnosed with castration-resistant prostate cancer (CRPC) have had poor survival rates. In recent years there have been significant advances in the treatment of CRPC. In addition to cytotoxic chemotherapy, treating physicians and their patients now have the option of several new agents that target not only androgen- and cytotoxic-mediated pathways, but also the patient's own immune system. In this review, we discuss the existing US FDA-approved therapies, a wide range of experimental treatments that are currently in development, and also palliative options for patients with symptoms secondary to metastatic disease. We also discuss the progression-free survival, overall survival, PSA levels and other end points used in clinical trials in order to evaluate and compare novel therapeutic options for CRPC. Currently, docetaxel and sipuleucel-T are the first line treatment options for patients with CRPC; approved second-line treatments for first line treatment failure are limited to cabazitaxel and abiraterone acetate. Recently, a few experimental agents, MDV3100 and radium-223, have demonstrated efficacy in improving overall survival in patients who had previously failed chemotherapy. These agents, and possibly others introduced in this review, are positioned to change the treatment landscape for CRPC.
Collapse
|
44
|
Biersack HJ. Reply: Palliation and Survival After Repeated 188Re-HEDP Therapy of Hormone-Refractory Bone Metastases of Prostate Cancer: A Retrospective Analysis. J Nucl Med 2012. [DOI: 10.2967/jnumed.112.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Radionuclide Therapy of Bone Metastases Using Rhenium-188 Hydroxyethylidene Diphosphonate. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/174_2012_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
46
|
Orsini F, Guidoccio F, Mazzarri S, Mariani G. Palliation and survival after repeated 188Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J Nucl Med 2012; 53:1330-1; author reply 1332. [PMID: 22717979 DOI: 10.2967/jnumed.112.104943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Abstract
The skeleton is a potential metastatic target of many malignant tumors. Up to 85% of prostate and breast cancer patients may develop bone metastases causing severe pain syndromes in many of them. In patients suffering from multilocular, mainly osteoblastic lesions and pain syndrome, radionuclide therapy is recommended for pain palliation. Low-energy beta-emitting radionuclides ((153)samarium-ethylenediaminetetrameth-ylenephosphonate (EDTMP) and (89)strontium) deliver high radiation doses to bone metastases and micrometastases in the bone marrow, but only negligible doses to the hematopoietic marrow. The response rate regarding pain syndrome is about 75%; about 25% of the patients may even become pain free. The therapy is repeatable, depending on cell counts. Concomitant treatment with modern bisphosphonates does not interfere with the treatment effects. Clinical trials using a new, not yet approved nuclide ((223)Radium) and/or combinations of chemotherapy and radionuclides are aiming at a more curative approach.
Collapse
|