1
|
The developmental journey of therapies targeting purine receptors: from basic science to clinical trials. Purinergic Signal 2022; 18:435-450. [PMID: 36173587 PMCID: PMC9832190 DOI: 10.1007/s11302-022-09896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Since the discovery of ATP as an extracellular signalling molecule in 1972, purinergic signalling, mediated by extracellular purines and pyrimidines has been identified in virtually all mammalian tissues and is implicated in regulating fundamental cellular processes. In recent years, there has been an increasing focus on the pathophysiology and potential therapeutic interventions based on purinergic signalling. A vast range of compounds targeting purine receptors are in clinical development, and many more are in preclinical studies, which highlights the fast growth in this research field. As a tribute to Professor Geoffrey Burnstock's legacy in purinergic signalling, we present here a brief review of compounds targeting purine receptors that are in different stages of clinical trials. The review highlights the 50-year journey from basic research on purinergic receptors to clinical applications of therapies targeting purine receptors.
Collapse
|
2
|
Yang X, Heitman LH, IJzerman AP, van der Es D. Molecular probes for the human adenosine receptors. Purinergic Signal 2021; 17:85-108. [PMID: 33313997 PMCID: PMC7954947 DOI: 10.1007/s11302-020-09753-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/01/2020] [Indexed: 11/29/2022] Open
Abstract
Adenosine receptors, G protein-coupled receptors (GPCRs) that are activated by the endogenous ligand adenosine, have been considered potential therapeutic targets in several disorders. To date however, only very few adenosine receptor modulators have made it to the market. Increased understanding of these receptors is required to improve the success rate of adenosine receptor drug discovery. To improve our understanding of receptor structure and function, over the past decades, a diverse array of molecular probes has been developed and applied. These probes, including radioactive or fluorescent moieties, have proven invaluable in GPCR research in general. Specifically for adenosine receptors, the development and application of covalent or reversible probes, whether radiolabeled or fluorescent, have been instrumental in the discovery of new chemical entities, the characterization and interrogation of adenosine receptor subtypes, and the study of adenosine receptor behavior in physiological and pathophysiological conditions. This review summarizes these applications, and also serves as an invitation to walk another mile to further improve probe characteristics and develop additional tags that allow the investigation of adenosine receptors and other GPCRs in even finer detail.
Collapse
Affiliation(s)
- Xue Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daan van der Es
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Do caffeine and more selective adenosine A 2A receptor antagonists protect against dopaminergic neurodegeneration in Parkinson's disease? Parkinsonism Relat Disord 2020; 80 Suppl 1:S45-S53. [PMID: 33349580 PMCID: PMC8102090 DOI: 10.1016/j.parkreldis.2020.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
The adenosine A2A receptor is a major target of caffeine, the most widely used psychoactive substance worldwide. Large epidemiological studies have long shown caffeine consumption is a strong inverse predictor of Parkinson’s disease (PD). In this review, we first examine the epidemiology of caffeine use vis-à-vis PD and follow this by looking at the evidence for adenosine A2A receptor antagonists as potential neuroprotective agents. There is a wealth of accumulating biological, epidemiological and clinical evidence to support the further investigation of selective adenosine A2A antagonists, as well as caffeine, as promising candidate therapeutics to fill the unmet need for disease modification of PD.
Collapse
|
4
|
Sun MJ, Liu F, Zhao YF, Wu XA. In Vivo Positron Emission Tomography Imaging of Adenosine A 2A Receptors. Front Pharmacol 2020; 11:599857. [PMID: 33324226 PMCID: PMC7726429 DOI: 10.3389/fphar.2020.599857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
As an invasive nuclear medical imaging technology, positron emission tomography (PET) possess the possibility to imaging the distribution as well as the density of selective receptors via specific PET tracers. Inspired by PET, the development of radio-chemistry has greatly promoted the progress of innovative imaging PET tracers for adenosine receptors, in particular adenosine A2A receptors (A2ARs). PET imaging of A2A receptors play import roles in the research of adenosine related disorders. Several radio-tracers for A2A receptors imaging have been evaluated in human studies. This paper reviews the recent research progress of PET tracers for A2A receptors imaging, and their applications in the diagnosis and treatment of related disease, such as cardiovascular diseases, autoimmune diseases, neurodegenerative and psychiatric disease. The future development of A2A PET tracers were also discussed.
Collapse
Affiliation(s)
- Meng-Juan Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Ya-Fei Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiao-Ai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Orr AG, Lo I, Schumacher H, Ho K, Gill M, Guo W, Kim DH, Knox A, Saito T, Saido TC, Simms J, Toddes C, Wang X, Yu GQ, Mucke L. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 2018; 110:29-36. [PMID: 29100987 PMCID: PMC5747997 DOI: 10.1016/j.nbd.2017.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine A2A receptors are putative therapeutic targets for neurological disorders. The adenosine A2A receptor antagonist istradefylline is approved in Japan for Parkinson's disease and is being tested in clinical trials for this condition elsewhere. A2A receptors on neurons and astrocytes may contribute to Alzheimer's disease (AD) by impairing memory. However, it is not known whether istradefylline enhances cognitive function in aging animals with AD-like amyloid plaque pathology. Here, we show that elevated levels of Aβ, C-terminal fragments of the amyloid precursor protein (APP), or amyloid plaques, but not overexpression of APP per se, increase astrocytic A2A receptor levels in the hippocampus and neocortex of aging mice. Moreover, in amyloid plaque-bearing mice, low-dose istradefylline treatment enhanced spatial memory and habituation, supporting the conclusion that, within a well-defined dose range, A2A receptor blockers might help counteract memory problems in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anna G Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA.
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Heike Schumacher
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Weikun Guo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel H Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anthony Knox
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Carlee Toddes
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Khanapur S, van Waarde A, Dierckx RAJO, Elsinga PH, Koole MJB. Preclinical Evaluation and Quantification of 18F-Fluoroethyl and 18F-Fluoropropyl Analogs of SCH442416 as Radioligands for PET Imaging of the Adenosine A 2A Receptor in Rat Brain. J Nucl Med 2016; 58:466-472. [PMID: 27789720 DOI: 10.2967/jnumed.116.178103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/02/2016] [Indexed: 11/16/2022] Open
Abstract
The cerebral adenosine A2A receptor is an attractive therapeutic target for neuropsychiatric disorders. 18F-fluoroethyl and 18F-fluoropropyl analogs of 18F-labeled pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH442416) (18F-FESCH and 18F-FPSCH, respectively) were developed as A2A receptor-specific PET ligands. Our aim was to determine an appropriate compartmental model for tracer kinetics, evaluate a reference tissue approach, and select the most suitable PET ligand. Methods: A 90-min dynamic PET scan with arterial blood sampling and metabolite analysis was acquired for 22 healthy male Wistar rats starting at the time of 18F-FESCH (n = 12) and 18F-FPSCH (n = 10) injection. For each tracer, half the animals were vehicle-treated whereas the other half were pretreated with the A2A receptor-selective antagonist KW-6002, inducing full blocking. Regional tissue total volume of distribution (VT) was estimated by 1- and 2-tissue-compartment modeling (1TCM and 2TCM, respectively) and Logan graphical analysis. Midbrain, cerebellum, and hippocampus were evaluated as the reference region by comparing baseline VT with VT under full blocking conditions and comparing striatal nondisplaceable binding potential (BPND) using a simplified reference tissue model (SRTM) with distribution volume ratio minus 1 (DVR - 1) for 60- and 90-min scans. Results: On the basis of the Akaike information criterion, 1TCM and 2TCM were the most appropriate models for 18F-FPSCH (baseline striatal VT, 3.7 ± 1.1) and 18F-FESCH (baseline striatal VT, 5.0 ± 2.0), respectively. Baseline striatal VT did not significantly differ between tracers. After pretreatment, striatal VT was reduced significantly, with no significant decrease in hippocampus, midbrain, or cerebellum VT Baseline striatal SRTM BPND did not differ significantly from DVR - 1 except for 18F-FPSCH when using a 60-min scan and midbrain as the reference region, whereas Bland-Altman analysis found a smaller bias for 18F-FESCH and a 60-min scan. After pretreatment, striatal SRTM BPND did not significantly differ from zero except for 18F-FPSCH when using hippocampus as the reference region. Striatal SRTM BPND using midbrain or cerebellum as the reference region was significantly lower for 18F-FPSCH (range, 1.41-2.62) than for 18F-FESCH (range, 1.64-3.36). Conclusion: Dynamic PET imaging under baseline and blocking conditions determined 18F-FESCH to be the most suitable PET ligand for quantifying A2A receptor expression in the rat brain. Accurate quantification is achieved by a 60-min dynamic PET scan and the use of either cerebellum or midbrain as the reference region.
Collapse
Affiliation(s)
- Shivashankar Khanapur
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Michel J B Koole
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and .,Department of Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Vala C, Morley TJ, Zhang X, Papin C, Tavares AAS, Lee HS, Constantinescu C, Barret O, Carroll VM, Baldwin RM, Tamagnan GD, Alagille D. Synthesis and in vivo Evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as PET and SPECT Radiotracers for Mapping A2A Receptors. ChemMedChem 2016; 11:1936-43. [PMID: 27407017 DOI: 10.1002/cmdc.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Indexed: 11/06/2022]
Abstract
Imaging agents that target adenosine type 2A (A2A ) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson's disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A -specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [(123) I]MNI-420 and [(18) F]MNI-444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine-18 or iodine-123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7-(2-(4-(4-(2-[(18) F]fluoroethoxy)phenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine ([(18) F]MNI-444) and 7-(2-(4-(2-fluoro-4-[(123) I]iodophenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-amine ([(123) I]MNI-420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.
Collapse
Affiliation(s)
- Christine Vala
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Thomas J Morley
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA.
| | - Xuechun Zhang
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Caroline Papin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | | | - H Sharon Lee
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Cristian Constantinescu
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Olivier Barret
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Vincent M Carroll
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Ronald M Baldwin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Gilles D Tamagnan
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - David Alagille
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| |
Collapse
|
8
|
Barret O, Hannestad J, Vala C, Alagille D, Tavares A, Laruelle M, Jennings D, Marek K, Russell D, Seibyl J, Tamagnan G. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. J Nucl Med 2015; 56:586-91. [PMID: 25698783 DOI: 10.2967/jnumed.114.152546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED PET with selective adenosine 2A receptor (A2A) radiotracers can be used to study a variety of neurodegenerative and neuropsychiatric disorders in vivo and to support drug-discovery studies targeting A2A. The aim of this study was to describe the first in vivo evaluation of (18)F-MNI-444, a novel PET radiotracer for imaging A2A, in healthy human subjects. METHODS Ten healthy human volunteers were enrolled in this study; 6 completed the brain PET studies and 4 participated in the whole-body PET studies. Arterial blood was collected for invasive kinetic modeling of the brain PET data. Noninvasive methods of data quantification were also explored. Test-retest reproducibility was evaluated in 5 subjects. Radiotracer distribution and dosimetry was determined using serial whole-body PET images acquired over 6 h post-radiotracer injection. Urine samples were collected to calculate urinary excretion. RESULTS After intravenous bolus injection, (18)F-MNI-444 rapidly entered the brain and displayed a distribution consistent with known A2A densities in the brain. Binding potentials ranging from 2.6 to 4.9 were measured in A2A-rich regions, with an average test-retest variability of less than 10%. The estimated whole-body radiation effective dose was approximately 0.023 mSv/MBq. CONCLUSION (18)F-MNI-444 is a useful PET radiotracer for imaging A2A in the human brain. The superior in vivo brain kinetic properties of (18)F-MNI-444, compared with previously developed A2A radiotracers, provide the opportunity to foster global use of in vivo A2A PET imaging in neuroscience research.
Collapse
Affiliation(s)
- Olivier Barret
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | | | - Christine Vala
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | - David Alagille
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | | | | | - Danna Jennings
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | - Ken Marek
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | - David Russell
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | - John Seibyl
- Molecular NeuroImaging, LLC, New Haven, Connecticut; and
| | | |
Collapse
|
9
|
Naganawa M, Mishina M, Sakata M, Oda K, Hiura M, Ishii K, Ishiwata K. Test-retest variability of adenosine A2A binding in the human brain with (11)C-TMSX and PET. EJNMMI Res 2014; 4:76. [PMID: 25621197 PMCID: PMC4293456 DOI: 10.1186/s13550-014-0076-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Background The goal of the present study was to evaluate the reproducibility of cerebral adenosine A2A receptor (A2AR) quantification using 11C-TMSX and PET in a test-retest study. Methods Five healthy volunteers were studied twice. The test-retest variability was assessed for distribution volume (VT) and binding potential relative to non-displaceable uptake (BPND) based on either metabolite-corrected arterial blood sampling or a reference region. The cerebral cortex and centrum semiovale were used as candidate reference regions. Results Test-retest variability of VT was good in all regions (6% to 13%). In the putamen, BPND using the centrum semiovale displayed a lower test-retest variability (3%) than that of BPND using the cerebral cortex as a reference region (5%). The noninvasive method showed a higher or similar level of test-retest reproducibility compared to the invasive method. Conclusions Binding reproducibility is sufficient to use 11C-TMSX as a tool to measure the change in A2AR in the human brain. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0076-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mika Naganawa
- PET Center, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520-8048 USA ; Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Masahiro Mishina
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan ; Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-0022 Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Keiichi Oda
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Hokkaido, 006-8585 Japan
| | - Mikio Hiura
- Faculty of Sports and Health Studies, Hosei University, Tokyo, 194-0298 Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| |
Collapse
|
10
|
Liu CH, Sastre A, Conroy R, Seto B, Pettigrew RI. NIH workshop on clinical translation of molecular imaging probes and technology--meeting report. Mol Imaging Biol 2014; 16:595-604. [PMID: 24833042 PMCID: PMC4161932 DOI: 10.1007/s11307-014-0746-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A workshop on "Clinical Translation of Molecular Imaging Probes and Technology" was held August 2, 2013 in Bethesda, Maryland, organized and supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB). This workshop brought together researchers, clinicians, representatives from pharmaceutical companies, molecular probe developers, and regulatory science experts. Attendees met to talk over current challenges in the discovery, validation, and translation of molecular imaging (MI) probes for key clinical applications. Participants also discussed potential strategies to address these challenges. The workshop consisted of 4 sessions, with 14 presentations and 2 panel discussions. Topics of discussion included (1) challenges and opportunities for clinical research and patient care, (2) advances in molecular probe design, (3) current approaches used by industry and pharmaceutical companies, and (4) clinical translation of MI probes. In the presentations and discussions, there were general agreement that while the barriers for validation and translation of MI probes remain high, there are pressing clinical needs and development opportunities for targets in cardiovascular, cancer, endocrine, neurological, and inflammatory diseases. The strengths of different imaging modalities, and the synergy of multimodality imaging, were highlighted. Participants also underscored the continuing need for close interactions and collaborations between academic and industrial partners, and federal agencies in the imaging probe development process.
Collapse
Affiliation(s)
- Christina H Liu
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Blvd., Suite 200, Bethesda, MD, 20892, USA,
| | | | | | | | | |
Collapse
|
11
|
Duan Y, Lockwood J, Wei L, Hunter C, Soueidan K, Bensimon C, Fernando P, Wells RG, Ruddy TD. Biodistribution and radiodosimetry of a novel myocardial perfusion tracer 123I-CMICE-013 in healthy rats. EJNMMI Res 2014; 4:16. [PMID: 24620906 PMCID: PMC3995622 DOI: 10.1186/2191-219x-4-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 123I-CMICE-013 is a novel radiotracer previously reported to have promising characteristics for single-photon emission computed tomography (SPECT) myocardial perfusion imaging. We evaluated the biokinetics and radiodosimetry of this rotenone-like 123I-labeled tracer in a microSPECT imaging-based study. METHODS 37 to 111 MBq of 123I-CMICE-013 was synthesized and administered intravenously to 14 healthy rats. Images were acquired with a microSPECT/CT camera at various time intervals and reconstructed to allow activity quantification in the tissues of interest. Radiation dosage resulted from the injection of 123I-CMICE-013 was estimated base on the biodistribution data. Tissue uptake values from image analysis were verified by gamma-counting dissected organs ex vivo. RESULTS The heart/stomach and heart/intestine uptake ratios peaked shortly after the injection of 123I-CMICE-013, meanwhile the heart/liver ratio reached 2 as early as at 23 min post-injection. Little activity was observed in the lung and overnight clearance was significant in most of the measured tissues. The radiation dosimetry analysis based on the time-activity curves provided an estimate of the effective human dose of 6.99E-03 mSv/MBq using ICRP 60 and 7.15E-03 mSv/MBq using ICRP 103, which is comparable to the popular myocardium perfusion imaging (MPI) agents such as 99mTc-tetrofosmin and 99mTc-sestamibi, as well as other 123I-based radiotracers. CONCLUSIONS 123I-CMICE-013 demonstrated desirable characteristics in its biokinetic and radiodosimetric profiles, supporting its potential application as a novel myocardial perfusion imaging agent.
Collapse
Affiliation(s)
- Yin Duan
- Nordion Inc, 447 March Road, Ottawa, ON K2K 1X8, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Julia Lockwood
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Lihui Wei
- Nordion Inc, 447 March Road, Ottawa, ON K2K 1X8, Canada
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Chad Hunter
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
| | - Karen Soueidan
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Corinne Bensimon
- Nordion Inc, 447 March Road, Ottawa, ON K2K 1X8, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Pasan Fernando
- Nordion Inc, 447 March Road, Ottawa, ON K2K 1X8, Canada
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8 M5, Canada
| | - R Glenn Wells
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| | - Terrence D Ruddy
- Division of Cardiology, Faculty of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4 W7, Canada
- Canadian Molecular Imaging Center of Excellence (CMICE), University of Ottawa Heart Institute, 40 Ruskin Street, UOHI-H5228, Ottawa, ON K1Y 4 W7, Canada
| |
Collapse
|
12
|
Mishina M, Ishiwata K. Adenosine Receptor PET Imaging in Human Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:51-69. [DOI: 10.1016/b978-0-12-801022-8.00002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|