1
|
Yang L, Yin L, Hu M, Zhao W, Wang C, Chen Y, Li Z, Wang L. Preliminary Evaluation of 18F-Labeled Benzylguanidine Analogs as NET Tracers for Myocardial Infarction Diagnosis. Mol Imaging Biol 2023; 25:1125-1134. [PMID: 37580463 DOI: 10.1007/s11307-023-01844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Heart failure (HF) remains a major cause of late morbidity and mortality after myocardial infarction (MI). To date, no clinically established 18F-labeled sympathetic nerve PET tracers for monitoring myocardial infarction are available. Therefore, in this study, we synthesized a series of 18F-labeled benzyl guanidine analogs and evaluated their efficacy as cardiac neuronal norepinephrine transporter (NET) tracers for myocardial imaging. We also investigated the preliminary diagnostic capabilities of these tracers in myocardial infarction animal models, as well as the structure-activity relationship of these tracers. PROCEDURES Three benzyl guanidine-NET tracers, including [18F]1, [18F]2, and [18F]3, were synthesized and evaluated in vivo as PET tracers in a myocardial infarction mouse model. [18F]LMI1195 was used as a positive control for the tracers. H&E staining of the isolated myocardial infarction heart tissue sections was performed to verify the efficacy of the selected PET tracer. RESULTS Our data show that [18F]3 had a moderate decay corrected labeling yield (~10%) and high radiochemical purity (>95%) compared to other tracers. The uptake of [18F]3 in normal mouse hearts was 1.7±0.1%ID/cc at 1 h post-injection (p. i.), while it was 2.4±0.1, 2.6±0.9, and 2.1±0.4%ID/cc in the MI mouse hearts at 1, 2, and 3 days after surgery, respectively. Compared with [18F]LMI1195, [18F]3 had a better myocardial imaging effect in terms of the contrast between normal and MI hearts. The area of myocardial infarction shown by PET imaging corresponded well with the infarcted tissue demonstrated by H&E staining. CONCLUSIONS With an obvious cardiac uptake contrast between normal mice and the myocardial infarction mouse model, [18F]3 appears to be a potential tool in the diagnosis of myocardial infarction. Therefore, it is necessary to conduct further structural modification studies on the chemical structure of [18F]3 to improve its in vivo stability and diagnostic detection ability to achieve reliable and practical imaging effects.
Collapse
Affiliation(s)
- Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Liping Yin
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Mei Hu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Changjiang Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Mohr H, Foscarini A, Steiger K, Ballke S, Rischpler C, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals: preclinical models to improve diagnosis and treatment. EJNMMI Res 2021; 11:121. [PMID: 34894301 PMCID: PMC8665914 DOI: 10.1186/s13550-021-00855-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs), together referred to as PPGLs, are rare chromaffin cell-derived tumors. They require timely diagnosis as this is the only way to achieve a cure through surgery and because of the potentially serious cardiovascular complications and sometimes life-threatening comorbidities that can occur if left untreated. The biochemical diagnosis of PPGLs has improved over the last decades, and the knowledge of the underlying genetics has dramatically increased. In addition to conventional anatomical imaging by CT and MRI for PPGL detection, new functional imaging modalities have emerged as very useful for patient surveillance and stratification for therapy. The availability of validated and predictive animal models of cancer is essential for translating molecular, imaging and therapy response findings from the bench to the bedside. This is especially true for rare tumors, such as PPGLs, for which access to large cohorts of patients is limited. There are few animal models of PPGLs that have been instrumental in refining imaging modalities for early tumor detection, as well as in identifying and evaluating novel imaging tracers holding promise for the detection and/or treatment of human PPGLs. The in vivo PPGL models mainly include xenografts/allografts generated by engrafting rat or mouse cell lines, as no representative human cell line is available. In addition, there is a model of endogenous PCCs (i.e., MENX rats) that was characterized in our laboratory. In this review, we will summarize the contribution that various representative models of PPGL have given to the visualization of these tumors in vivo and we present an example of a tracer first evaluated in MENX rats, and then translated to the detection of these tumors in human patients. In addition, we will illustrate briefly the potential of ex vivo biological imaging of intact adrenal glands in MENX rats.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessia Foscarini
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany. .,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Initial Evaluation of AF78: a Rationally Designed Fluorine-18-Labelled PET Radiotracer Targeting Norepinephrine Transporter. Mol Imaging Biol 2021; 22:602-611. [PMID: 31332629 PMCID: PMC7250802 DOI: 10.1007/s11307-019-01407-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose Taking full advantage of positron emission tomography (PET) technology, fluorine-18-labelled radiotracers targeting norepinephrine transporter (NET) have potential applications in the diagnosis and assessment of cardiac sympathetic nerve conditions as well as the delineation of neuroendocrine tumours. However, to date, none have been used clinically. Drawbacks of currently reported radiotracers include suboptimal kinetics and challenging radiolabelling procedures. Procedures We developed a novel fluorine-18-labelled radiotracer targeting NET, AF78, with efficient one-step radiolabelling based on the phenethylguanidine structure. Radiosynthesis of AF78 was undertaken, followed by validation in cell uptake studies, autoradiography, and in vivo imaging in rats. Results [18F]AF78 was successfully synthesized with 27.9 ± 3.1 % radiochemical yield, > 97 % radiochemical purity and > 53.8 GBq/mmol molar activity. Cell uptake studies demonstrated essentially identical affinity for NET as norepinephrine and meta-iodobenzylgaunidine. Both ex vivo autoradiography and in vivo imaging in rats showed homogeneous and specific cardiac uptake. Conclusions The new PET radiotracer [18F]AF78 demonstrated high affinity for NET and favourable biodistribution in rats. A structure-activity relationship between radiotracer structures and affinity for NET was revealed, which may serve as the basis for the further design of NET targeting radiotracers with favourable features. Electronic supplementary material The online version of this article (10.1007/s11307-019-01407-5) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Kessler L, Schlitter AM, Krönke M, von Werder A, Tauber R, Maurer T, Robinson S, Orlandi C, Herz M, Yousefi BH, Nekolla SG, Schwaiger M, Eiber M, Rischpler C. First Experience Using 18F-Flubrobenguane PET Imaging in Patients with Suspected Pheochromocytoma or Paraganglioma. J Nucl Med 2020; 62:479-485. [PMID: 32859709 DOI: 10.2967/jnumed.120.248021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Pheochromocytomas and paragangliomas are a rare tumor entity originating from adrenomedullary chromaffin cells in the adrenal medulla or in sympathetic, paravertebral ganglia outside the medulla. Small lesions are especially difficult to detect by conventional CT or MRI and even by SPECT with the currently available radiotracers (e.g., metaiodobenzylguanidine [MIBG]). The novel PET radiotracer 18F-flubrobenguane could change the diagnostic paradigm in suspected pheochromocytomas and paragangliomas because of its homology with MIBG and the general advantages of PET imaging. The aim of this retrospective analysis was to evaluate 18F-flubrobenguane in pheochromocytomas and paragangliomas and to investigate the biodistribution in patients. Methods: Twenty-three patients with suspected pheochromocytoma or paraganglioma underwent PET/CT or PET/MRI at 63 ± 24 min after injection of 256 ± 33 MBq of 18F-flubrobenguane. The SUVmean and SUVmax of organs were measured with spheric volumes of interest. Threshold-segmented volumes of interest were used to measure the SUVmean or SUVmax of the tumor lesions. One reader evaluated all cross-sectional imaging datasets (CT or MRI) separately, as well as the PET hybrid datasets, and reported the lesion number and size. The diagnostic certainty for a positive lesion was scored on a 3-point scale. Results: 18F-flubrobenguane showed a reproducible, stable biodistribution, with the highest SUVmax and SUVmean being in the thyroid gland (30.3 ± 2.2 and 22.5 ± 1.6, respectively), pancreas (12.2 ± 0.8 and 9.5 ± 0.7, respectively), and tumor lesions (16.8 ± 1.7 and 10.1 ± 1.1, respectively) and the lowest SUVmax and SUVmean being in muscle (1.1 ± 0.06 and 0.7 ± 0.04, respectively) and the lung (2.5 ± 0.17 and 1.85 ± 0.13, respectively). In a subgroup analysis, a significantly higher average SUVmean was seen for both pheochromocytoma and paraganglioma than for healthy adrenal glands (11.9 ± 2.0 vs. 9.9 ± 1.5 vs. 3.7 ± 0.2, respectively). In total, 47 lesions were detected. The reader reported more and smaller lesions with higher certainty in PET hybrid imaging than in conventional imaging; however, statistical significance was not reached. Of the 23 (23/47, 49%) lesions smaller than 1 cm, 61% (14/23) were found on hybrid imaging only. Conclusion: Our preliminary data suggest 18F-flubrobenguane PET to be a new, effective staging tool for patients with suspected pheochromocytoma or paraganglioma. Major advantages are the fast acquisition and high spatial resolution of PET imaging and the intense uptake in tumor lesions, facilitating detection. Further studies are warranted to define the role of 18F-flubrobenguane PET, particularly in comparison to standard diagnostic procedures such as MRI or 123I-MIBG SPECT/CT.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna M Schlitter
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Markus Krönke
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander von Werder
- Department of Gastroenterology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Tauber
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Maurer
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Simon Robinson
- Discovery Research, Lantheus Medical Imaging, North Billerica, Massachusetts; and
| | - Cesare Orlandi
- Discovery Research, Lantheus Medical Imaging, North Billerica, Massachusetts; and
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Behrooz H Yousefi
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nuclear Medicine, Philipps University of Marburg, Marburg, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany .,Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Pauwels E, Van Aerde M, Bormans G, Deroose CM. Molecular imaging of norepinephrine transporter-expressing tumors: current status and future prospects. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:234-249. [PMID: 32397701 DOI: 10.23736/s1824-4785.20.03261-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human norepinephrine transporter (hNET) is a transmembrane protein responsible for reuptake of norepinephrine in presynaptic sympathetic nerve terminals and adrenal chromaffin cells. Neural crest tumors, such as neuroblastoma, paraganglioma and pheochromocytoma often show high hNET expression. Molecular imaging of these tumors can be done using radiolabeled norepinephrine analogs that target hNET. Currently, the most commonly used radiopharmaceutical for hNET imaging is meta-[123I]iodobenzylguanidine ([123I]MIBG) and this has been the case since its development several decades ago. The γ-emitter, iodine-123 only allows for planar scintigraphy and single photon emission computed tomography imaging. These modalities typically have a poorer spatial resolution and lower sensitivity than positron emission tomography (PET). Additional practical disadvantages include the fact that a two-day imaging protocol is required and the need for thyroid blockade. Therefore, several PET alternatives for hNET imaging are actively being explored. This review gives an in-depth overview of the current status and recent developments in clinical trials leading to the next generation of clinical PET ligands for imaging of hNET-expressing tumors.
Collapse
Affiliation(s)
- Elin Pauwels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Matthias Van Aerde
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium - .,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| |
Collapse
|
6
|
Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J Neural Transm (Vienna) 2020; 127:851-873. [PMID: 32274584 PMCID: PMC7223405 DOI: 10.1007/s00702-020-02180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
The norepinephrine transporter (NET) is a major target for the evaluation of the cardiac sympathetic nerve system in patients with heart failure and Parkinson's disease. It is also used in the therapeutic applications against certain types of neuroendocrine tumors, as exemplified by the clinically used 123/131I-MIBG as theranostic single-photon emission computed tomography (SPECT) agent. With the development of more advanced positron emission tomography (PET) technology, more radiotracers targeting NET have been reported, with superior temporal and spatial resolutions, along with the possibility of functional and kinetic analysis. More recently, fluorine-18-labelled NET tracers have drawn increasing attentions from researchers, due to their longer radiological half-life relative to carbon-11 (110 min vs. 20 min), reduced dependence on on-site cyclotrons, and flexibility in the design of novel tracer structures. In the heart, certain NET tracers provide integral diagnostic information on sympathetic innervation and the nerve status. In the central nervous system, such radiotracers can reveal NET distribution and density in pathological conditions. Most radiotracers targeting cardiac NET-function for the cardiac application consistent of derivatives of either norepinephrine or MIBG with its benzylguanidine core structure, e.g. 11C-HED and 18F-LMI1195. In contrast, all NET tracers used in central nervous system applications are derived from clinically used antidepressants. Lastly, possible applications of NET as selective tracers over organic cation transporters (OCTs) in the kidneys and other organs controlled by sympathetic nervous system will also be discussed.
Collapse
|
7
|
Jang KS, Lee SS, Oh YH, Lee SH, Kim SE, Kim DW, Lee BC, Lee S, Raffel DM. Control of reactivity and selectivity of guanidinyliodonium salts toward 18F-Labeling by monitoring of protecting groups: Experiment and theory. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Lee S, Jang KS, Lee BC, Oh Y, Park SW, Kim DW, Jang GH, Lee S. Origin of Difference in the Reactivity of Aliphatic and Aromatic Guanidine‐containing Pharmaceuticals Toward [
18
F]Fluorination: Coulombic Forces and Hydrogen Bonding. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sung‐Sik Lee
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| | - Keun Sam Jang
- Division of Nuclear Medicine, Department of RadiologyUniversity of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Byung Chul Lee
- Department of Nuclear MedicineSeoul National University Bundang Hospital, Seoul National University College of Medicine Gyeonggi‐do 13620 Republic of Korea
| | - Young‐Ho Oh
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| | - Sung Wook Park
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| | - Dong Woo Kim
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| | - Gi Hyung Jang
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| | - Sungyul Lee
- Department of Applied ChemistryKyung Hee University Gyeonggi‐do 17140 Republic of Korea
| |
Collapse
|
9
|
Chen X, Werner RA, Lapa C, Nose N, Hirano M, Javadi MS, Robinson S, Higuchi T. Subcellular storage and release mode of the novel 18F-labeled sympathetic nerve PET tracer LMI1195. EJNMMI Res 2018; 8:12. [PMID: 29411169 PMCID: PMC5801140 DOI: 10.1186/s13550-018-0365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND 18F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (18F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. RESULTS Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of 18F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. 131I-meta-iodobenzylguanidine (131I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced 18F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca2+-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca2+ influx resulting from membrane depolarization. CONCLUSIONS Analogous to 131I-MIBG, the current in vitro tracer uptake study confirmed that 18F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of 18F-LMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Naoko Nose
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Department of Bio Medical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, Japan
| | - Mitsuru Hirano
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Department of Bio Medical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, Japan
| | - Mehrbod S Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany. .,Department of Bio Medical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, Japan.
| |
Collapse
|
10
|
Yamaguchi A, Hanaoka H, Higuchi T, Tsushima Y. Radiolabeled (4-Fluoro-3-Iodobenzyl)Guanidine Improves Imaging and Targeted Radionuclide Therapy of Norepinephrine Transporter–Expressing Tumors. J Nucl Med 2017; 59:815-821. [DOI: 10.2967/jnumed.117.201525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
|
11
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
12
|
Kobayashi R, Chen X, Werner RA, Lapa C, Javadi MS, Higuchi T. New horizons in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers. Eur J Nucl Med Mol Imaging 2017; 44:2302-2309. [DOI: 10.1007/s00259-017-3828-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022]
|
13
|
Lee M, Minaskan N, Wiedemann T, Irmler M, Beckers J, Yousefi BH, Kaissis G, Braren R, Laitinen I, Pellegata NS. Targeting PI3K/mTOR signaling exerts potent antitumor activity in pheochromocytoma in vivo. Endocr Relat Cancer 2017; 24:1-15. [PMID: 27811202 DOI: 10.1530/erc-16-0324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
Pheochromocytomas (PCCs) are mostly benign tumors, amenable to complete surgical resection. However, 10-17% of cases can become malignant, and once metastasized, there is no curative treatment for this disease. Given the need to identify the effective therapeutic approaches for PCC, we evaluated the antitumor potential of the dual-PI3K/mTOR inhibitor BEZ235 against these tumors. We employed an in vivo model of endogenous PCCs (MENX mutant rats), which closely recapitulate the human tumors. Mutant rats with PCCs were treated with 2 doses of BEZ235 (20 and 30 mg/kg), or with placebo, for 2 weeks. Treatment with BEZ235 induced cytostatic and cytotoxic effects on rat PCCs, which could be appreciated by both staining the tumors ex vivo with appropriate markers and non-invasively by functional imaging (diffusion-weighted magnetic resonance imaging) in vivo Transcriptomic analyses of tumors from rats treated with BEZ235 or placebo-identified potential mediators of therapy response were performed. Slc6a2, encoding the norepinephrine transporter (NET), was downregulated in a dose-dependent manner by BEZ235 in rat PCCs. Moreover, BEZ235 reduced Slc6a2/NET expression in PCC cell lines (MPC) also. Studies of a BEZ235-resistant derivative of the MPC cell line confirmed that the reduction of NET expression associates with the response to the drug. Reduction of NET expression after BEZ235 treatment in vivo could be monitored by positron emission tomography (PET) using a tracer targeting NET. Altogether, here we demonstrate the efficacy of BEZ235 against PCC in vivo, and show that functional imaging can be employed to monitor the response of PCC to PI3K/mTOR inhibition therapy.
Collapse
Affiliation(s)
- Misu Lee
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Ninelia Minaskan
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
- Technische Universität MünchenChair of Experimental Genetics, Freising, Germany
| | - Behrooz H Yousefi
- Department of Pharmaceutical RadiochemistryTechnische Universität München, Garching, Germany
| | - Georgios Kaissis
- Institute for Diagnostic and Interventional RadiologyKlinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional RadiologyKlinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Iina Laitinen
- Department of Nuclear MedicineKlinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
14
|
Leinhäuser I, Richter A, Lee M, Höfig I, Anastasov N, Fend F, Ercolino T, Mannelli M, Gimenez-Roqueplo AP, Robledo M, de Krijger R, Beuschlein F, Atkinson MJ, Pellegata NS. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma. Oncotarget 2016; 6:39111-26. [PMID: 26337467 PMCID: PMC4770760 DOI: 10.18632/oncotarget.4912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy.
Collapse
Affiliation(s)
- Ines Leinhäuser
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Richter
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nataša Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology Comprehensive Cancer Center Tübingen and University of Tübingen, Tübingen, Germany
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria di Careggi, Endocrine Unit, Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR U970, Paris Cardiovascular Research Center-PARCC, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ronald de Krijger
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
15
|
Wiedemann T, Peitzsch M, Qin N, Neff F, Ehrhart-Bornstein M, Eisenhofer G, Pellegata NS. Morphology, Biochemistry, and Pathophysiology of MENX-Related Pheochromocytoma Recapitulate the Clinical Features. Endocrinology 2016; 157:3157-66. [PMID: 27254000 DOI: 10.1210/en.2016-1108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheochromocytomas (PCCs) are tumors arising from neural crest-derived chromaffin cells. There are currently few animal models of PCC that recapitulate the key features of human tumors. Because such models may be useful for investigations of molecular pathomechanisms and development of novel therapeutic interventions, we characterized a spontaneous animal model (multiple endocrine neoplasia [MENX] rats) that develops endogenous PCCs with complete penetrance. Urine was longitudinally collected from wild-type (wt) and MENX-affected (mutant) rats and outputs of catecholamines and their O-methylated metabolites determined by mass spectrometry. Adrenal catecholamine contents, cellular ultrastructure, and expression of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were also determined in wt and mutant rats. Blood pressure was longitudinally measured and end-organ pathology assessed. Compared with wt rats, mutant animals showed age-dependent increases in urinary outputs of norepinephrine (P = .0079) and normetanephrine (P = .0014) that correlated in time with development of tumor nodules, increases in blood pressure, and development of hypertension-related end-organ pathology. Development of tumor nodules, which lacked expression of N-methyltransferase, occurred on a background of adrenal medullary morphological and biochemical changes occurring as early as 1 month of age and involving increased adrenal medullary concentrations of dense cored vesicles, tissue contents of both norepinephrine and epinephrine, and urinary outputs of metanephrine, the metabolite of epinephrine. Taken together, MENX-affected rats share several biochemical and pathophysiological features with PCC patients. This model thus provides a suitable platform to study the pathogenesis of PCC for preclinical translational studies aimed at the development of novel therapies for aggressive forms of human tumors.
Collapse
Affiliation(s)
- Tobias Wiedemann
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nan Qin
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Frauke Neff
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
16
|
Wiedemann T, Pellegata NS. Animal models of multiple endocrine neoplasia. Mol Cell Endocrinol 2016; 421:49-59. [PMID: 26184857 DOI: 10.1016/j.mce.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Multiple endocrine neoplasia (MEN) syndromes are autosomal dominant diseases with high penetrance characterized by proliferative lesions (usually hyperplasia or adenoma) arising in at least two endocrine tissues. Four different MEN syndromes have been so far identified: MEN type 1 (MEN1), MEN2A (also referred to as MEN2), MEN2B (or MEN3) and MEN4, which have slightly varying tumor spectra and are caused by mutations in different genes. MEN1 associates with loss-of-function mutations in the MEN1 gene encoding the tumor suppressor menin. The MEN2A and MEN2B syndromes are due to activating mutations in the proto-oncogene RET (Rearranged in Transfection) and are characterized by different phenotypic features of the affected patients. MEN4 was the most recent addition to the family of the MEN syndromes. It was discovered less than 10 years ago thanks to studies of a rat strain that spontaneously develops multiple endocrine tumors (named MENX). These studies identified an inactivating mutation in the Cdkn1b gene, encoding the putative tumor suppressor p27, as the causative mutation of the rat syndrome. Subsequently, germline mutations in the human ortholog CDKN1B were also found in a subset of patients with a MEN-like phenotype and this led to the identification of MEN4. Small animal models have been instrumental in understanding important biochemical, physiological and pathological processes of cancer onset and spread in intact living organisms. Moreover, they have provided us with insight into gene function(s) and molecular mechanisms of disease progression. We here review the currently available animal models of MEN syndromes and their impact on the elucidation of the pathophysiology of these diseases, with a special focus on the rat MENX syndrome that we have been characterizing.
Collapse
Affiliation(s)
- Tobias Wiedemann
- Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
17
|
Fedorova OS, Orlovskaya VV, Maleev VI, Belokon’ YN, Savel’eva TF, Chang CV, Chen CL, Liu RS, Krasikova RN. An approach to the asymmetric synthesis of 18F-labeled analog of l-threo-3,4-dihydroxyphenylserine (6-l-threo-[18F]FDOPS) — a new radiotracer for visualization of norepinephrine transporters by positron emission tomography. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0567-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|