1
|
Park JY, Park SM, Lee TS, Lee SJ, Kim JY, Oh SJ, Yoon HJ, Kim BS, Moon BS. Innovations in Nuclear Medicine Imaging for Reactive Oxygen Species: Applications and Radiopharmaceuticals. Antioxidants (Basel) 2024; 13:1254. [PMID: 39456507 PMCID: PMC11504556 DOI: 10.3390/antiox13101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications. Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers, facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission tomography and single photon emission computed tomography, for diagnostic purposes. This review includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or cystine/glutamate transporter.
Collapse
Affiliation(s)
- Joo Yeon Park
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.)
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.)
| | - Tae Sup Lee
- Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (S.J.L.); (S.J.O.)
| | - Ji-Young Kim
- Department of Nuclear Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea; (J.-Y.K.); (H.-J.Y.)
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (S.J.L.); (S.J.O.)
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea; (J.-Y.K.); (H.-J.Y.)
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.)
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.)
| |
Collapse
|
2
|
Sharkey AR, Witney TH, Cook GJR. Is System x c- a Suitable Target for Tumour Detection and Response Assessment with Imaging? Cancers (Basel) 2023; 15:5573. [PMID: 38067277 PMCID: PMC10705217 DOI: 10.3390/cancers15235573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
System xc- is upregulated in cancer cells and can be imaged using novel radiotracers, most commonly with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid (18F-FSPG). The aim of this review was to summarise the use of 18F-FSPG in humans, explore the benefits and limitations of 18F-FSPG, and assess the potential for further use of 18F-FSPG in cancer patients. To date, ten papers have described the use of 18F-FSPG in human cancers. These studies involved small numbers of patients (range 1-26) and assessed the use of 18F-FSPG as a general oncological diagnostic agent across different cancer types. These clinical trials were contrasting in their findings, limiting the scope of 18F-FSPG PET/CT as a purely diagnostic agent, primarily due to heterogeneity of 18F-FSPG retention both between cancer types and patients. Despite these limitations, a potential further application for 18F-FSPG is in the assessment of early treatment response and prediction of treatment resistance. Animal models of cancer have shown that changes in 18F-FSPG retention following effective therapy precede glycolytic changes, as indicated by 18F-FDG, and changes in tumour volume, as measured by CT. If these results could be replicated in human clinical trials, imaging with 18F-FSPG PET/CT would offer an exciting route towards addressing the currently unmet clinical needs of treatment resistance prediction and early imaging assessment of therapy response.
Collapse
Affiliation(s)
- Amy R. Sharkey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Timothy H. Witney
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Gary J. R. Cook
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
- King’s College London and Guy’s and St. Thomas’ PET Centre, St. Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
3
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
4
|
Colovic M, Yang H, Southcott L, Merkens H, Colpo N, Bénard F, Schaffer P. Comparative Evaluation of [ 18F]5-Fluoroaminosuberic Acid and (4 S)-4-3-[ 18F]fluoropropyl)-l-Glutamate as System xC--Targeting Radiopharmaceuticals. J Nucl Med 2023:jnumed.122.265254. [PMID: 37116917 DOI: 10.2967/jnumed.122.265254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Indexed: 04/30/2023] Open
Abstract
System [Formula: see text] is an appealing biomarker for targeting oxidative stress with oncologic PET imaging and can serve as an alternative PET biomarker to other metabolic indicators. In this paper, we report a direct comparison of 2 18F-labeled amino acid radiopharmaceuticals targeting system [Formula: see text], [18F]5-fluoroaminosuberic acid ([18F]FASu) and (4S)-4-(3-[18F]fluoropropyl)-l-glutamate ([18F]FSPG), in terms of their uptake specificity and ability to image glioma and lung cancer xenografts in vivo. Methods: Both tracers were synthesized according to previously published procedures. In vitro uptake specificity assays were conducted using prostate (PC-3), glioblastoma (U-87), colorectal (HT-29), ovarian (SKOV3), breast (MDA-MB-231), and lung cancer (A549) cell lines. PET/CT imaging and biodistribution studies were conducted in immunocompromised mice bearing U-87 or A549 xenografts. Results: In vitro cell uptake assays showed that the tracers accumulated in cancer cells in a time-dependent manner and that the uptake of [18F]FASu was blocked by the system [Formula: see text] inhibitor sulfasalazine and rose bengal, but not by system L inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, system [Formula: see text] inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid, or l-serine, which is a substrate for transporter systems A, ACS, B0, and B0,+ Conversely, [18F]FSPG uptake decreased significantly in the presence of an excess of L-trans-pyrrolidine-2,4-dicarboxylic acid in 2 of 3 tested cell lines, indicating some reliance on system [Formula: see text] in these cells. In an in vivo setting, [18F]FASu and [18F]FSPG generated good-contrast PET images in U-87 and A549 tumor-bearing mice. Tracer accumulation in A549 tumors was 5.0 ± 0.8 percentage injected dose (%ID)/g ([18F]FASu, n ≥ 5) and 6.3 ± 1.3 %ID/g ([18F]FSPG, n ≥ 6, P = 0.7786), whereas U-87 xenografts demonstrated uptake of 6.1 ± 2.4 %ID/g ([18F]FASu, n ≥ 4) and 11.2 ± 4.1 %ID/g ([18F]FSPG, n ≥ 4, P = 0.0321) at 1 h after injection. Conclusion: [18F]FSPG had greater in vitro uptake than [18F]FASu in all cell lines tested; however, our results indicate that residual uptake differences exist between [18F]FSPG and [18F]FASu, suggesting alternative transporter activity in the cell lines tested. In vivo studies demonstrated the ability of both [18F]FASu and [18F]FSPG to image glioblastoma (U-87) and non-small cell lung cancer (A549) xenografts.
Collapse
Affiliation(s)
- Milena Colovic
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
| | - Lily Southcott
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Francois Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; and
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
5
|
Cui Y, Wang X, Jiang Z, Zhang C, Liang Z, Chen Y, Liu Z, Guo Z. A Photoacoustic Probe with Blood-Brain Barrier Crossing Ability for Imaging Oxidative Stress Dynamics in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202214505. [PMID: 36597890 DOI: 10.1002/anie.202214505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Spatiotemporal assessment of the oxidative stress dynamics in the brain is crucial for understanding the molecular mechanism underlying neurodegenerative diseases. However, existing oxidative stress probes have poor blood-brain barrier permeability or poor penetration depth, making them unsuitable for brain imaging. Herein, we developed a photoacoustic probe that enables real-time imaging of oxidative stress dynamics in the mouse brain. The probe not only responds to oxidative stress in a reversible and ratiometric manner, but it can also cross the blood-brain barrier of the mouse brain. Notably, the probe displayed excellent photoacoustic imaging of oxidative stress dynamics in the brains of Parkinson's disease mouse models. In addition, we investigated the antioxidant properties of natural polyphenols in the brain of a Parkinson's disease mouse model using the probe as an imaging agent and suggested the potential of the probe for screening anti-oxidative stress agents.
Collapse
Affiliation(s)
- Yijing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| |
Collapse
|
6
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
7
|
Hu M, Yang L, Liu N, Long R, Zhou L, Zhao W, Feng Y, Wang C, Li Z, Chen Y, Wang L. Evaluation of sulfone-labeled amino acid derivatives as potential PET agents for cancer imaging. Nucl Med Biol 2023; 116-117:108311. [PMID: 36580767 DOI: 10.1016/j.nucmedbio.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION As one of the most important and frequently used molecular imaging techniques in the clinic, positron emission tomography (PET) features high sensitivity and specificity, which generally involves the use of PET contrast agents. Despite the exceptional promise, the availability of novel PET agents could limit its application and there is a clear need to develop new PET agents to improve our understanding of targets of interest and increase the diagnostic specificity. METHODS Based on the fact that amino acid transport and protein anabolism are increased in tumor tissues, a series of 18F-labeled amino acid analog was labeled with 18F by using [18F]fluoro-4-(vinylsulfonyl)benzene as the radionuclide linker. The obtained probes were subjected to in vitro and in vivo evaluation, including stability, cell line transport channel specificity, PET/CT imaging on tumor and inflammation bearing mice, and biodistribution. RESULTS Our data shows that [18F]2a had moderate decay corrected labeling yield (>42 %) and high radiochemical purity (>99 %). When tested in vivo, the uptake of [18F]2a was 1.5 ± 0.2%ID/g in NCI-H1975 tumors and 1.1 ± 0.2%ID/g in inflammatory tissues. In contrast, the values for [18F]FDG were 5.7 ± 0.2%ID/g and 4.8 ± 0.1%ID/g, respectively. The inflammatory lesion-to-muscle contrast is 2.4 for [18F]2a, which is 3.0 for [18F]FDG. CONCLUSION Clearly, [18F]2a hold the great potential for cancer imaging. Its application in distinguishing tumor from inflammatory lesion would still need to be investigated further.
Collapse
Affiliation(s)
- Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Liping Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Ruiling Long
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Liu Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Changjiang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Huang L, Li Z, Zhang X. Radiotracers for Nuclear Imaging of Reactive Oxygen Species: Advances Made So Far. Bioconjug Chem 2022; 33:749-766. [PMID: 35467335 DOI: 10.1021/acs.bioconjchem.2c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are a cluster of highly reactive and short-lived oxygen-containing molecules that lead to metabolic disorders where production exceeds catabolism in an organism. Many specific radiotracers for positron/single-photon emission tomography have been developed to reveal the discrepancy of ROS levels in normal and damaged tissues and further clarify the relationship between ROS and diseases. This review summarizes the advances achieved for the development of ROS radiotracers to date. The structure design, radiosynthesis, and imaging performance of existing radiotracers are discussed with the individual ROS-response mechanisms highlighted.
Collapse
Affiliation(s)
- Lumei Huang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| |
Collapse
|
9
|
Yamasaki T, Sano K, Mukai T. Redox Monitoring in Nuclear Medical Imaging. Antioxid Redox Signal 2022; 36:797-810. [PMID: 34847731 DOI: 10.1089/ars.2021.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: The imbalance in redox homeostasis is known as oxidative stress, which is relevant to many diseases such as cancer, arteriosclerosis, and neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is one of the factors that trigger the redox state imbalance in vivo. The ROS have high reactivity and impair biomolecules, whereas antioxidants and antioxidant enzymes, such as ascorbate and glutathione, reduce the overproduction of ROS to rectify the redox imbalance. Owing to this, redox monitoring tools have been developed to understand the redox fluctuations in oxidative stress-related diseases. Recent Advances: In an attempt to monitor redox substances, including ROS and radical species, versatile modalities have been developed, such as electron spin resonance, chemiluminescence, and fluorescence. In particular, many fluorescent probes have been developed that are selective for ROS. This has significantly contributed to understanding the relevance of ROS in disease onset and progression. Critical Issues: To date, the dynamics of ROS and radical fluctuation in in vivo redox states remain unclear, and there are a few methods for the in vivo detection of redox fluctuations. Future Directions: In this review, we summarize the development of radiolabeled probes for monitoring redox-relevant species by nuclear medical imaging that is applicable in vivo. In the future, translational research is likely to be advanced through the development of highly sensitive and in vivo applicable detection methods, such as nuclear medical imaging, to clarify the underlying dynamics of ROS, radicals, and redox substances in many diseases. Antioxid. Redox Signal. 36, 797-810.
Collapse
Affiliation(s)
- Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
10
|
Beckers P, Lara O, Belo do Nascimento I, Desmet N, Massie A, Hermans E. Validation of a System xc– Functional Assay in Cultured Astrocytes and Nervous Tissue Samples. Front Cell Neurosci 2022; 15:815771. [PMID: 35095428 PMCID: PMC8793334 DOI: 10.3389/fncel.2021.815771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Disruption of the glutamatergic homeostasis is commonly observed in neurological diseases and has been frequently correlated with the altered expression and/or function of astrocytic high-affinity glutamate transporters. There is, however, a growing interest for the role of the cystine-glutamate exchanger system xc– in controlling glutamate transmission. This exchanger is predominantly expressed in glial cells, especially in microglia and astrocytes, and its dysregulation has been documented in diverse neurological conditions. While most studies have focused on measuring the expression of its specific subunit xCT by RT-qPCR or by Western blotting, the activity of this exchanger in tissue samples remains poorly examined. Indeed, the reported use of sulfur- and carbon-radiolabeled cystine in uptake assays shows several drawbacks related to its short radioactive half-life and its relatively high cost. We here report on the elaborate validation of a method using tritiated glutamate as a substrate for the reversed transport mediated by system xc–. The uptake assay was validated in primary cultured astrocytes, in transfected cells as well as in crude synaptosomes obtained from fresh nervous tissue samples. Working in buffers containing defined concentrations of Na+, allowed us to differentiate the glutamate uptake supported by system xc– or by high-affinity glutamate transporters, as confirmed by using selective pharmacological inhibitors. The specificity was further demonstrated in primary astrocyte cultures from transgenic mice lacking xCT or in cell lines where xCT expression was genetically induced or reduced. As such, this assay appears to be a robust and cost-efficient solution to investigate the activity of this exchanger in physiological and pathological conditions. It also provides a reliable tool for the screening and characterization of new system xc– inhibitors which have been frequently cited as valuable drugs for nervous disorders and cancer.
Collapse
Affiliation(s)
- Pauline Beckers
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Olaya Lara
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ines Belo do Nascimento
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Desmet
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Hermans
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Emmanuel Hermans,
| |
Collapse
|
11
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- *Correspondence: Michele Balma
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Greenwood HE, Witney TH. Latest Advances in Imaging Oxidative Stress in Cancer. J Nucl Med 2021; 62:1506-1510. [PMID: 34353871 PMCID: PMC7611938 DOI: 10.2967/jnumed.120.256974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is the imbalance of harmful reactive oxygen species (ROS) and the action of neutralizing antioxidant mechanisms. If left unchecked, the deleterious effects of oxidative stress result in damage to DNA, proteins, and membranes, ultimately leading to cell death. Tumors are highly proliferative and consequently generate high levels of mitochondrial ROS. To compensate for this and maintain redox homeostasis, cancer cells upregulate protective antioxidant pathways, which are further amplified in drug-resistant tumors. This review provides an overview of the latest molecular imaging techniques designed to image oxidative stress in cancer. New probes can now assess heterogeneous ROS and antioxidant production within tumors and across lesions. Together, the noninvasive imaging of these dynamic processes holds great promise for monitoring response to treatment and predicting drug resistance and may provide insight into the metastatic potential of tumors.
Collapse
Affiliation(s)
- Hannah E Greenwood
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
14
|
Edwards R, Greenwood HE, McRobbie G, Khan I, Witney TH. Robust and Facile Automated Radiosynthesis of [ 18F]FSPG on the GE FASTlab. Mol Imaging Biol 2021; 23:854-864. [PMID: 34013395 PMCID: PMC8578107 DOI: 10.1007/s11307-021-01609-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
Purpose (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. Procedures An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. Results The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/μmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. Conclusions We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01609-w.
Collapse
Affiliation(s)
- Richard Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Graeme McRobbie
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Imtiaz Khan
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
15
|
Ikawa M, Okazawa H, Yoneda M. Molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. Biochim Biophys Acta Gen Subj 2020; 1865:129832. [PMID: 33358866 DOI: 10.1016/j.bbagen.2020.129832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence from pathological and biochemical investigations suggests that mitochondrial metabolic impairment and oxidative stress play a crucial role in the pathogenesis of mitochondrial diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and various neurodegenerative disorders. Recent advances in molecular imaging technology with positron emission tomography (PET) and functional magnetic resonance imaging (MRI) have accomplished a direct and non-invasive evaluation of the pathophysiological changes in living patients. SCOPE OF REVIEW In this review, we focus on the latest achievements of molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. MAJOR CONCLUSIONS Molecular imaging with PET and MRI exhibited mitochondrial metabolic changes, such as enhanced glucose utilization with lactic acid fermentation, suppressed fatty acid metabolism, decreased TCA-cycle metabolism, impaired respiratory chain activity, and increased oxidative stress, in patients with MELAS syndrome. In addition, PET imaging clearly demonstrated enhanced cerebral oxidative stress in patients with Parkinson's disease or amyotrophic lateral sclerosis. The magnitude of oxidative stress correlated well with clinical severity in patients, indicating that oxidative stress based on mitochondrial dysfunction is associated with the neurodegenerative changes in these diseases. GENERAL SIGNIFICANCE Molecular imaging is a promising tool to improve our knowledge regarding the pathogenesis of diseases associated with mitochondrial dysfunction and oxidative stress, and this would facilitate the development of potential antioxidants and mitochondrial therapies.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
16
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
17
|
Park SY, Mosci C, Kumar M, Wardak M, Koglin N, Bullich S, Mueller A, Berndt M, Stephens AW, Chin FT, Gambhir SS, Mittra ES. Initial evaluation of (4S)-4-(3-[ 18F]fluoropropyl)-L-glutamate (FSPG) PET/CT imaging in patients with head and neck cancer, colorectal cancer, or non-Hodgkin lymphoma. EJNMMI Res 2020; 10:100. [PMID: 32857284 PMCID: PMC7455665 DOI: 10.1186/s13550-020-00678-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose (4S)-4-(3-[18F]Fluoropropyl)-l-glutamic acid ([18F]FSPG) measures system xC− transporter activity and shows promise for oncologic imaging. We present data on tumor uptake of this radiopharmaceutical in human subjects with head and neck cancer (HNC), colorectal cancer (CRC), and non-Hodgkin lymphoma (NHL). Methods A total of 15 subjects with HNC (n = 5), CRC (n = 5), or NHL (n = 5) were recruited (mean age 66.2 years, range 44–87 years). 301.4 ± 28.1 MBq (8.1 ± 0.8 mCi) of [18F]FSPG was given intravenously to each subject, and 3 PET/CT scans were obtained 0–2 h post-injection. All subjects also had a positive [18F]FDG PET/CT scan within 1 month prior to the [18F]FSPG PET scan. Semi-quantitative and visual comparisons of the [18F]FSPG and [18F]FDG scans were performed. Results [18F]FSPG showed strong uptake in all but one HNC subject. The lack of surrounding brain uptake facilitated tumor delineation in the HNC patients. [18F]FSPG also showed tumor uptake in all CRC subjects, but variable uptake in the NHL subjects. While the absolute [18F]FDG SUV values were comparable or higher than [18F]FSPG, the tumor-to-background SUV ratios were greater with [18F]FSPG than [18F]FDG. Conclusions [18F]FSPG PET/CT showed promising results across 15 subjects with 3 different cancer types. Concordant visualization was mostly observed between [18F]FSPG and [18F]FDG PET/CT images, with some inter- and intra-individual uptake variability potentially reflecting differences in tumor biology. The tumor-to-background ratios were greater with [18F]FSPG than [18F]FDG in the cancer types evaluated. Future studies based on larger numbers of subjects and those with a wider array of primary and recurrent or metastatic tumors are planned to further evaluate the utility of this novel tracer.
Collapse
Affiliation(s)
- Sonya Y Park
- Department of Radiology, Division of Nuclear Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Camila Mosci
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meena Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mirwais Wardak
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norman Koglin
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | | | - Andre Mueller
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Mathias Berndt
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Andrew W Stephens
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.,Bio-X Program, Stanford University, Stanford, CA, USA
| | - Erik S Mittra
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Diagnostic Radiology, Division of Nuclear Medicine & Molecular Imaging, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L340, Portland, OR, 97239, USA.
| |
Collapse
|
18
|
Park SY, Na SJ, Kumar M, Mosci C, Wardak M, Koglin N, Bullich S, Mueller A, Berndt M, Stephens AW, Cho YM, Ahn H, Chae SY, Kim HO, Moon DH, Gambhir SS, Mittra ES. Clinical Evaluation of (4S)-4-(3-[ 18F]Fluoropropyl)-L-glutamate ( 18F-FSPG) for PET/CT Imaging in Patients with Newly Diagnosed and Recurrent Prostate Cancer. Clin Cancer Res 2020; 26:5380-5387. [PMID: 32694158 DOI: 10.1158/1078-0432.ccr-20-0644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE (4S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a radiopharmaceutical for PET imaging of system xC - activity, which can be upregulated in prostate cancer. We present data on the first evaluation of patients with newly diagnosed or recurrent prostate cancer with this radiopharmaceutical. EXPERIMENTAL DESIGN Ten patients with primary and 10 patients with recurrent prostate cancer were enrolled in this prospective multicenter study. After injection of 300 MBq of 18F-FSPG, three whole-body PET/CT scans were obtained. Visual analysis was compared with step-section histopathology when available as well as other imaging studies and clinical outcomes. Metabolic parameters were measured semiquantitatively. Expression levels of xCT and CD44 were evaluated by IHC for patients with available tissue samples. RESULTS 18F-FSPG PET showed high tumor-to-background ratios with a relatively high tumor detection rate on a per-patient (89%) and per-lobe (87%) basis. The sensitivity was slightly higher with imaging at 105 minutes in comparison with 60 minutes. The maximum standardized uptake values (SUVmax) for cancer was significantly higher than both normal (P < 0.005) and benign pathology (P = 0.011), while there was no significant difference between normal and benign pathology (P = 0.120). In the setting of recurrence, agreement with standard imaging was demonstrated in 7 of 9 patients (78%) and 13 of 18 lesions (72%), and revealed true local recurrence in a discordant case. 18F-FSPG accumulation showed moderate correlation with CD44 expression. CONCLUSIONS 18F-FSPG is a promising tumor imaging agent for PET that seems to have favorable biodistribution and high cancer detection rate in patients with prostate cancer. Further studies are warranted to determine the diagnostic value for both initial staging and recurrence, and how it compares with other investigational radiotracers and conventional imaging modalities.
Collapse
Affiliation(s)
- Sonya Youngju Park
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea (South).,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California
| | - Sae Jung Na
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea (South).,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South)
| | - Meena Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California
| | - Camila Mosci
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California
| | - Mirwais Wardak
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California
| | | | | | | | | | | | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South)
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South)
| | - Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South)
| | - Hye Ok Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South).,Department of Nuclear Medicine, Ewha Woman's University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea (South)
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea (South)
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California.,Department of Bioengineering, Department of Materials Science & Engineering, Stanford Bio-X Program, Stanford University, Stanford, California
| | - Erik S Mittra
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California. .,Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol 2020; 32:101494. [PMID: 32199332 PMCID: PMC7083890 DOI: 10.1016/j.redox.2020.101494] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis is implicated in Alzheimer’s disease (AD) alongside β-amyloid and tau pathologies. Despite the recent discovery of ferroptosis, an iron-dependent form cell death, hitherto, in vivo evidence of ferroptosis in AD is lacking. The present study uniquely adopts an integrated multi-disciplinary approach, combining protein (Western blot) and elemental analysis (total reflection X-ray fluorescence) with metabolomics (1H nuclear magnetic resonance spectroscopy) to identify iron dyshomeostasis and ferroptosis, and possible novel interactions with metabolic dysfunction in age-matched male cognitively normal (CN) and AD post-mortem brain tissue (n = 7/group). Statistical analysis was used to compute differences between CN and AD, and to examine associations between proteins, elements and/or metabolites. Iron dyshomeostasis with elevated levels of ferritin, in the absence of increased elemental iron, was observed in AD. Moreover, AD was characterised by enhanced expression of the light-chain subunit of the cystine/glutamate transporter (xCT) and lipid peroxidation, reminiscent of ferroptosis, alongside an augmented excitatory glutamate to inhibitory GABA ratio. Protein, element and metabolite associations also greatly differed between CN and AD suggesting widespread metabolic dysregulation in AD. We demonstrate iron dyshomeostasis, upregulated xCT (impaired glutathione metabolism) and lipid peroxidation in AD, suggesting anti-ferroptotic therapies may be efficacious in AD.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Place du Parc 20, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
20
|
Alluri SR, Pitman KE, Malinen E, Riss PJ. Synthesis, radiosynthesis, and positron emission tomography neuroimaging using 5-[ 18 F]fluoro-L-amino suberate. J Labelled Comp Radiopharm 2020; 63:6-14. [PMID: 31697846 DOI: 10.1002/jlcr.3814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023]
Abstract
System xc- (Sxc -) has emerged as a new biological target for PET studies to detect oxidative and excitotoxic stress. Notably, applications have, thus far, been limited to tumour imaging although Sxc- ) may play a major role in neurodegeneration. The synthesis procedures of tosylate precursor and its translation to Sxc - PET tracer 5[18F]fluoro-L-amino suberate by manual and automated radiosyntheses are described. A brain-PET study has been conducted to evaluate the tracer uptake into brain in healthy mice.
Collapse
Affiliation(s)
- Santosh R Alluri
- Realomics Strategic Research Initiative (SRI), Department of Chemistry, University of Oslo, Oslo, Norway
| | - Kathinka E Pitman
- Realomics Strategic Research Initiative (SRI), Department of Chemistry, University of Oslo, Oslo, Norway
- Realomics Strategic Research Initiative (SRI), Department of Physics, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Realomics Strategic Research Initiative (SRI), Department of Chemistry, University of Oslo, Oslo, Norway
- Realomics Strategic Research Initiative (SRI), Department of Physics, University of Oslo, Oslo, Norway
| | - Patrick J Riss
- Realomics Strategic Research Initiative (SRI), Department of Chemistry, University of Oslo, Oslo, Norway
- Realomics Strategic Research Initiative (SRI), Department of Physics, University of Oslo, Oslo, Norway
- Realomics Strategic Research Initiative (SRI), NMS AS, Oslo, Norway
| |
Collapse
|
21
|
The Effect of Chirality on the Application of 5-[18F]Fluoro-Aminosuberic Acid ([18F]FASu) for Oxidative Stress Imaging. Mol Imaging Biol 2019; 22:873-882. [DOI: 10.1007/s11307-019-01450-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Pitman KE, Alluri SR, Kristian A, Aarnes EK, Lyng H, Riss PJ, Malinen E. Influx rate of 18F-fluoroaminosuberic acid reflects cystine/glutamate antiporter expression in tumour xenografts. Eur J Nucl Med Mol Imaging 2019; 46:2190-2198. [PMID: 31264167 DOI: 10.1007/s00259-019-04375-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE 18F-fluoroaminosuberic acid (18F-FASu) is a recently developed amino acid tracer for positron emission tomography (PET) of oxidative stress that may offer improved tumour assessment over the conventional tracer 18F-fluorodeoxyglucose (18F-FDG). Our aim was to evaluate and relate dynamic 18F-FASu and 18F-FDG uptake with pharmacokinetic modelling to transporter protein expression levels in a panel of diverse tumour xenograft lines. METHODS Four different tumour xenograft lines were implanted in female athymic nude mice: MAS98.12 and HBCx3 (breast), TPMX (osteosarcoma) and A549 (lung). Dynamic PET over 60 min was performed on a small animal unit. The time-activity curves (TACs) for 18F-FASu and 18F-FDG in individual tumours were used to extract early (SUVE; 2 min p.i.) and late (SUVL; 55 min p.i.) standardised uptake values. Pharmacokinetic two-tissue compartment models were applied to the TACs to estimate rate constants K1-k4 and blood volume fraction vB. Relative levels of cystine/glutamate antiporter subunit xCT were assessed by western blotting, and expression of GLUT1 and CD31 by immunohistochemistry. RESULTS 18F-FASu showed higher SUVE, whilst 18F-FDG exhibited higher SUVL. Influx rate K1 for 18F-FASu was significantly correlated with xCT levels (p = 0.001) and was significantly higher than K1 for 18F-FDG (p < 0.001). K1 for 18F-FDG was significantly correlated with GLUT1 levels (p = 0.002). vB estimated from 18F-FASu and 18F-FDG TACs was highly consistent and significantly correlated (r = 0.85, p < 0.001). Two qualitatively different 18F-FASu uptake profiles were identified: type α with low xCT expression and low K1 (A549 and HBCx3), and type β with high xCT expression and high K1 (MAS98.12 and TPMX). CONCLUSION The influx rate of 18F-FASu reflects xCT activity in tumour xenografts. Dynamic PET with pharmacokinetic modelling is needed to fully appraise 18F-FASu distribution routes.
Collapse
Affiliation(s)
- Kathinka E Pitman
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Santosh R Alluri
- Department of Chemistry, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway
| | | | | | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Patrick J Riss
- Department of Chemistry, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316, Oslo, Norway.
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Beinat C, Gowrishankar G, Shen B, Alam IS, Robinson E, Haywood T, Patel CB, Azevedo EC, Castillo JB, Ilovich O, Koglin N, Schmitt-Willich H, Berndt M, Mueller A, Zerna M, Srinivasan A, Gambhir SS. The Characterization of 18F-hGTS13 for Molecular Imaging of xC− Transporter Activity with PET. J Nucl Med 2019; 60:1812-1817. [DOI: 10.2967/jnumed.119.225870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
|
24
|
Ralph SJ, Nozuhur S, ALHulais RA, Rodríguez‐Enríquez S, Moreno‐Sánchez R. Repurposing drugs as pro‐oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Med Res Rev 2019; 39:2397-2426. [DOI: 10.1002/med.21589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Stephen J. Ralph
- School of Medical ScienceGriffith University Southport Australia
| | - Sam Nozuhur
- School of Medical ScienceGriffith University Southport Australia
| | | | | | | |
Collapse
|
25
|
Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A 2019; 116:9433-9442. [PMID: 31000598 PMCID: PMC6511045 DOI: 10.1073/pnas.1821323116] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly regarding the relative contributions of oxidant versus antioxidant pathways. Here, we report that the cystine/glutamate transporter xCT is essential for RAS-induced tumorigenicity by enhancing antioxidant glutathione synthesis. Our findings uncover that RAS controls xCT transcription by downstream activation of ETS-1 to synergize with ATF4. This has clinical relevance since xCT expression is upregulated in human cancers exhibiting an activated RAS pathway. Therefore, oncogenic RAS transformation is supported by induction of an antioxidant program, highlighting xCT as a potential vulnerability for therapeutic targeting. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
Collapse
|
26
|
Čolović M, Yang H, Merkens H, Colpo N, Bénard F, Schaffer P. Non-invasive Use of Positron Emission Tomography to Monitor Diethyl maleate and Radiation-Induced Changes in System x C- Activity in Breast Cancer. Mol Imaging Biol 2019; 21:1107-1116. [PMID: 30838549 DOI: 10.1007/s11307-019-01331-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE The system xC- transporter is upregulated in cancer cells in response to oxidative stress (OS). 5-[18F]fluoroaminosuberic acid ([18F]FASu) has been reported as a novel positron emission tomography (PET) imaging agent, targeting system xC-. The goal of this study was to evaluate the utility of [18F]FASu in monitoring cellular response to diethyl maleate (DEM) and radiation-induced OS fluctuations. PROCEDURES [18F]FASu uptake by breast cancer cells was studied in correlation to OS biomarkers: glutathione (GSH) and reactive oxygen species (ROS), as well as transcriptional and translational levels of xCT (the functional subunit of xC-). System xC- inhibitor, sulfasalazine (SSZ), and small interfering RNA (siRNA) knockdown were used as negative controls. Radiotracer uptake was evaluated in three breast cancer models: MDA-MB-231, MCF-7, and ZR-75-1, at two-time points (1 h and 16 h) following OS induction. In vivo [18F]FASu imaging and biodistribution were performed using MDA-MB-231 xenograft-bearing mice at 16 and 24 h post-radiation treatment. RESULTS [18F]FASu uptake was positively correlated to intracellular GSH and SLC7A11 expression levels, and radiotracer uptake was induced both by radiation treatment and by DEM at time points longer than 3 h. In an in vivo setting, there was no statistically significant uptake difference between irradiated and control tumors. CONCLUSION [18F]FASu is a specific system xC- PET radiotracer and as such it can be used to monitor system xC- activity due to OS. As such, [18F]FASu has the potential to be used in therapy response monitoring by PET. Further optimization is required for in vivo application.
Collapse
Affiliation(s)
- Milena Čolović
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.,British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Helen Merkens
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nadine Colpo
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - François Bénard
- British Columbia Cancer Research Centre, Vancouver, BC, Canada. .,Molecular Oncology, British Columbia Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. .,Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada. .,Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, Canada. .,Department of Chemistry, Faculty of Science, Simon Fraser University, Vancouver, Canada.
| |
Collapse
|
27
|
McCormick PN, Greenwood HE, Glaser M, Maddocks ODK, Gendron T, Sander K, Gowrishankar G, Hoehne A, Zhang T, Shuhendler AJ, Lewis DY, Berndt M, Koglin N, Lythgoe MF, Gambhir SS, Årstad E, Witney TH. Assessment of Tumor Redox Status through ( S)-4-(3-[ 18F]fluoropropyl)-L-Glutamic Acid PET Imaging of System x c - Activity. Cancer Res 2019; 79:853-863. [PMID: 30401715 PMCID: PMC6379064 DOI: 10.1158/0008-5472.can-18-2634] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
The cell's endogenous antioxidant system is vital to maintenance of redox homeostasis. Despite its central role in normal and pathophysiology, no noninvasive tools exist to measure this system in patients. The cystine/glutamate antiporter system xc - maintains the balance between intracellular reactive oxygen species and antioxidant production through the provision of cystine, a key precursor in glutathione biosynthesis. Here, we show that tumor cell retention of a system xc --specific PET radiotracer, (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG), decreases in proportion to levels of oxidative stress following treatment with a range of redox-active compounds. The decrease in [18F]FSPG retention correlated with a depletion of intracellular cystine resulting from increased de novo glutathione biosynthesis, shown through [U-13C6, U-15N2]cystine isotopic tracing. In vivo, treatment with the chemotherapeutic doxorubicin decreased [18F]FSPG tumor uptake in a mouse model of ovarian cancer, coinciding with markers of oxidative stress but preceding tumor shrinkage and decreased glucose utilization. Having already been used in pilot clinical trials, [18F]FSPG PET could be rapidly translated to the clinic as an early redox indicator of tumor response to treatment. SIGNIFICANCE: [18F]FSPG PET imaging provides a sensitive noninvasive measure of tumor redox status and provides an early marker of tumor response to therapy.See related commentary by Lee et al., p. 701.
Collapse
Affiliation(s)
- Patrick N McCormick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Hannah E Greenwood
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Matthias Glaser
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London, United Kingdom
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thibault Gendron
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London, United Kingdom
| | - Kerstin Sander
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London, United Kingdom
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, Stanford, California
| | - Aileen Hoehne
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, Stanford, California
| | - Tong Zhang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, Stanford, California
| | - David Y Lewis
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, Stanford, California
| | | | | | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, Stanford, California
- Department of Bioengineering, Department of Materials Science and Engineering, Bio-X, Stanford University, Palo Alto, Stanford, California
| | - Erik Årstad
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London, United Kingdom
| | - Timothy H Witney
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Abstract
Amino acids are an alternate energy source to glucose, and amino acid metabolism is up-regulated in multiple malignancies, including breast cancers. Multiple amino acid radiotracers have been used to image breast cancer with unique strengths and weaknesses. 11C-methionine uptake correlates with S-phase fraction in breast cancer and may be useful for evaluation of treatment response. Invasive lobular breast cancers may demonstrate greater 18F-fluciclovine avidity than 18F-fluorodeoxyglucose. Thus, different histologic subtypes of breast cancer may use diverse metabolic pathways and may be better imaged by different tracers.
Collapse
Affiliation(s)
- Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical School, 525 East 68th Street, New York, NY 10065, USA.
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Synthesis and evaluation of an 18F-labeled boramino acid analog of aminosuberic acid for PET imaging of the antiporter system xC−. Bioorg Med Chem Lett 2018; 28:3579-3584. [DOI: 10.1016/j.bmcl.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 01/18/2023]
|
30
|
Huang L, Li Z, Zhang D, Li H, Shi C, Zhang P, Su X, Zhang X. Highly Specific and Sensitive Radioiodinated Agent for In Vivo Imaging of Superoxide through Superoxide-Initiated Retention. Anal Chem 2018; 90:12971-12978. [DOI: 10.1021/acs.analchem.8b03642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Deliang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Hua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
31
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
32
|
Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018; 5:124. [PMID: 29379780 PMCID: PMC5775220 DOI: 10.3389/fchem.2017.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.
Collapse
Affiliation(s)
- Aixia Sun
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liu
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
34
|
Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 2017; 8:60581-60588. [PMID: 28947996 PMCID: PMC5601164 DOI: 10.18632/oncotarget.19943] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Tumor glucose metabolism and amino acid metabolism are usually enhanced, 18F-FDG for tumor glucose metabolism PET imaging has been clinically well known, but tumor amino acid metabolism PET imaging is not clinically familiar. Radiolabeled amino acids (AAs) are an important class of PET/CT tracers that target the upregulated amino acid transporters to show elevated amino acid metabolism in tumor cells. Radiolabeled amino acids were observed to have high uptake in tumor cells but low in normal tissues and inflammatory tissues. The radionuclides used in labeling amino acids include 15O, 13N, 11C, 123I, 18F and 68Ga, among which the most commonly used is 18F [1]. Available data support the use of certain 18F-labeled AAs for PET/CT imaging of gliomas, neuroendocrine tumors, prostate cancer and breast cancer [2, 3]. With the progress of the method of 18F labeling AAs [4-6], 18F-labeled AAs are well established for tumor PET/CT imaging. This review focuses on the current status of key clinical applications of 18F-labeled AAs in tumor PET/CT imaging.
Collapse
|
35
|
Yang H, Tam B, Čolović M, Southcott L, Merkens H, Bénard F, Schaffer P. Addressing Chirality in the Structure and Synthesis of [18
F]5-Fluoroaminosuberic Acid ([18
F]FASu). Chemistry 2017; 23:11100-11107. [PMID: 28744973 DOI: 10.1002/chem.201702007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Hua Yang
- Life Sciences; TRIUMF; 4004 Wesbrook Mall V6T 2A3 Vancouver Canada
| | - Brian Tam
- Life Sciences; TRIUMF; 4004 Wesbrook Mall V6T 2A3 Vancouver Canada
| | - Milena Čolović
- The British Columbia Cancer Agency; 675 West 10 Ave. V5Z 1L3 Vancouver Canada
- Department of Radiology; University of British Columbia; 3350-950 West 10 Ave. V5Z 1L9 Vancouver Canada
| | - Lily Southcott
- Life Sciences; TRIUMF; 4004 Wesbrook Mall V6T 2A3 Vancouver Canada
| | - Helen Merkens
- The British Columbia Cancer Agency; 675 West 10 Ave. V5Z 1L3 Vancouver Canada
| | - François Bénard
- The British Columbia Cancer Agency; 675 West 10 Ave. V5Z 1L3 Vancouver Canada
- Department of Radiology; University of British Columbia; 3350-950 West 10 Ave. V5Z 1L9 Vancouver Canada
| | - Paul Schaffer
- Life Sciences; TRIUMF; 4004 Wesbrook Mall V6T 2A3 Vancouver Canada
- Department of Radiology; University of British Columbia; 3350-950 West 10 Ave. V5Z 1L9 Vancouver Canada
- Department of Chemistry; University of Simon Fraser; 8888 University Drive V5A 1S6 Vancouver Canada
| |
Collapse
|
36
|
Yang H, Jenni S, Colovic M, Merkens H, Poleschuk C, Rodrigo I, Miao Q, Johnson BF, Rishel MJ, Sossi V, Webster JM, Bénard F, Schaffer P. 18F-5-Fluoroaminosuberic Acid as a Potential Tracer to Gauge Oxidative Stress in Breast Cancer Models. J Nucl Med 2016; 58:367-373. [PMID: 27789715 DOI: 10.2967/jnumed.116.180661] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
The cystine transporter (system xC-) is an antiporter of cystine and glutamate. It has relatively low basal expression in most tissues and becomes upregulated in cells under oxidative stress (OS) as one of the genes expressed in response to the antioxidant response element promoter. We have developed 18F-5-fluoroaminosuberic acid (FASu), a PET tracer that targets system xC- The goal of this study was to evaluate 18F-FASu as a specific gauge for system xC- activity in vivo and its potential for breast cancer imaging. Methods:18F-FASu specificity toward system xC- was studied by cell inhibition assay, cellular uptake after OS induction with diethyl maleate, with and without anti-xCT small interfering RNA knockdown, in vitro uptake studies, and in vivo uptake in a system xC--transduced xenograft model. In addition, radiotracer uptake was evaluated in 3 breast cancer models: MDA-MB-231, MCF-7, and ZR-75-1. Results: Reactive oxygen species-inducing diethyl maleate increased glutathione levels and 18F-FASu uptake, whereas gene knockdown with anti-xCT small interfering RNA led to decreased tracer uptake. 18F-FASu uptake was robustly inhibited by system xC- inhibitors or substrates, whereas uptake was significantly higher in transduced cells and tumors expressing xCT than in wild-type HEK293T cells and tumors (P < 0.0001 for cells, P = 0.0086 for tumors). 18F-FASu demonstrated tumor uptake in all 3 breast cancer cell lines studied. Among them, triple-negative breast cancer MDA-MB-231, which has the highest xCT messenger RNA level, had the highest tracer uptake (P = 0.0058 when compared with MCF-7; P < 0.0001 when compared with ZR-75-1). Conclusion:18F-FASu as a system xC- substrate is a specific PET tracer for functional monitoring of system xC- and OS imaging. By enabling noninvasive analysis of xC- responses in vivo, this biomarker may serve as a valuable target for the diagnosis and treatment monitoring of certain breast cancers.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences, TRIUMF, Vancouver, Canada
| | - Silvia Jenni
- British Columbia Cancer Agency, Vancouver, Canada
| | - Milena Colovic
- Life Sciences, TRIUMF, Vancouver, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada
| | | | | | | | - Qing Miao
- Life Sciences, TRIUMF, Vancouver, Canada
| | | | | | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; and
| | | | - François Bénard
- British Columbia Cancer Agency, Vancouver, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Paul Schaffer
- Life Sciences, TRIUMF, Vancouver, Canada .,Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Chemistry, Simon Fraser University, Vancouver, Canada
| |
Collapse
|
37
|
Liu Z, Jian Z, Wang Q, Cheng T, Feuerecker B, Schwaiger M, Huang SC, Ziegler SI, Shi K. A Continuously Infused Microfluidic Radioassay System for the Characterization of Cellular Pharmacokinetics. J Nucl Med 2016; 57:1548-1555. [PMID: 27363838 DOI: 10.2967/jnumed.115.169151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Measurement of cellular tracer uptake is widely applied to learn the physiologic status of cells and their interactions with imaging agents and pharmaceuticals. In-culture measurements have the advantage of less stress to cells. However, the tracer solution still needs to be loaded, unloaded, and purged from the cell culture during the measurements. Here, we propose a continuously infused microfluidic radioassay (CIMR) system for continuous in-culture measurement of cellular uptake. The system was tested to investigate the influence of the glucose concentration in cell culture media on 18F-FDG uptake kinetics. METHODS The CIMR system consists of a microfluidic chip integrated with a flow-control unit and a positron camera. Medium diluted with radioactive tracer flows through a cell chamber continuously at low speed. Positrons emitted from the cells and from tracer in the medium are measured with the positron camera. The human cell lines SkBr3 and Capan-1 were incubated with media of 3 different glucose concentrations and then measured with 18F-FDG on the CIMR system. In addition, a conventional uptake experiment was performed. The relative uptake ratios between different medium conditions were compared. A cellular 2-compartment model was applied to estimate the cellular pharmacokinetics on CIMR data. The estimated pharmacokinetic parameters were compared with expressions of glucose transporter-1 (GLUT1) and hexokinase-2 measured by quantitative real-time polymerase chain reaction. RESULTS The relative uptake ratios obtained from CIMR measurements correlated significantly with those from the conventional uptake experiments. The relative SDs of the relative uptake ratios obtained from the CIMR uptake experiments were significantly lower than those from the conventional uptake experiments. The fit of the cellular 2-compartment model to the 18F-FDG CIMR measurements was of high quality. For SkBr3, the estimated pharmacokinetic parameters k1 and k3 were consistent with the messenger RNA expression of GLUT1 and hexokinase-2: culturing with low glucose concentrations led to higher GLUT1 and hexokinase-2 expression as well as higher estimated k1 and k3 For Capan-1, the estimated k1 and k3 increased as the glucose concentration in the culture medium decreased, and this finding did not match the corresponding messenger RNA expression. CONCLUSION The CIMR system captures dynamic uptake within the cell culture and enables estimation of the cellular pharmacokinetics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Ziying Jian
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Qian Wang
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Tao Cheng
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Kuangyu Shi
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| |
Collapse
|
38
|
Pilot Preclinical and Clinical Evaluation of (4S)-4-(3-[18F]Fluoropropyl)-L-Glutamate (18F-FSPG) for PET/CT Imaging of Intracranial Malignancies. PLoS One 2016; 11:e0148628. [PMID: 26890637 PMCID: PMC4758607 DOI: 10.1371/journal.pone.0148628] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Purpose (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a novel radiopharmaceutical for Positron Emission Tomography (PET) imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies. Experimental Design For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years). After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT) scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers. Results In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7). 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model. Conclusions 18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned. Trial Registration ClinicalTrials.gov NCT01186601
Collapse
|
39
|
Glöggler S, Wagner S, Bouchard LS. Hyperpolarization of amino acid derivatives in water for biological applications. Chem Sci 2015; 6:4261-4266. [PMID: 29218193 PMCID: PMC5707458 DOI: 10.1039/c5sc00503e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022] Open
Abstract
We report on the successful synthesis and hyperpolarization of N-unprotected α-amino acid ethyl propionate esters and extensively, on an alanine derivative hyperpolarized by PHIP (4.4 ± 1.0% 13C-polarization), meeting required levels for in vivo detection. Using water as solvent increases biocompatibility and the absence of N-protection is expected to maintain biological activity.
Collapse
Affiliation(s)
- S Glöggler
- Department of Chemistry and Biochemistry , University of California at Los Angeles , Los Angeles , California 90095-1569 , USA .
| | - S Wagner
- Biomedical Imaging Research Institute , Cedars Sinai Medical Center , 8700 Beverly Blvd, Davis Building G149E , Los Angeles , California 90048-1804 , USA
| | - L-S Bouchard
- Department of Chemistry and Biochemistry , University of California at Los Angeles , Los Angeles , California 90095-1569 , USA .
- California NanoSystems Institute , 570 Westwood Plaza, Building 114 , Los Angeles , California 90095-1569 , USA
- Department of Bioengineering , University of California at Los Angeles , 420 Westwood Plaza, RM 5121 Engineering V, P.O. Box 951600 , Los Angeles , California 90095-1569 , USA
| |
Collapse
|
40
|
Abstract
Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
41
|
Yang H, Miao Q, Johnson BF, Rishel MJ, Sossi V, Dinelle K, Bénard. F, Yapp DT, Webster JM, Schaffer P. A simple route to [11C]N-Me labeling of aminosuberic acid for proof of feasibility imaging of the xC− transporter. Bioorg Med Chem Lett 2014; 24:5512-5. [DOI: 10.1016/j.bmcl.2014.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023]
|
42
|
Abstract
BACKGROUND Traditional techniques analyzing mouse colitis are invasive, laborious, or indirect. Development of in vivo imaging techniques for specific colitis processes would be useful for monitoring disease progression and/or treatment effectiveness. The aim was to evaluate the applicability of the chemiluminescent probe L-012, which detects reactive oxygen and nitrogen species, for in vivo colitis imaging. METHODS Two genetic colitis mouse models were used; K8 knockout (K8(-/-)) mice, which develop early colitis and the nonobese diabetic mice, which develop a transient subclinical colitis. Dextran sulphate sodium was used as a chemical colitis model. Mice were anesthetized, injected intraperitoneally with L-012, imaged, and quantified for chemiluminescent signal in the abdominal region using an IVIS camera system. RESULTS K8(-/-) and nonobese diabetic mice showed increased L-012-mediated chemiluminescence from the abdominal region compared with control mice. L-012 signals correlated with the colitis phenotype assessed by histology and myeloperoxidase staining. Although L-012 chemiluminescence enabled detection of dextran sulphate sodium-induced colitis at an earlier time point compared with traditional methods, large mouse-to-mouse variations were noted. In situ and ex vivo L-012 imaging as well as [18F]FDG-PET imaging of K8(-/-) mice confirmed that the in vivo signals originated from the distal colon. L-012 in vivo imaging showed a wide variation in reactive oxygen and nitrogen species in young mice, irrespective of K8 genotype. In aging mice L-012 signals were consistently higher in K8(-/-) as compared to K8(+/+) mice. CONCLUSIONS In vivo imaging using L-012 is a useful, simple, and cost-effective tool to study the level and longitudinal progression of genetic and possibly chemical murine colitis.
Collapse
|
43
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|