1
|
Kiani P, Vatankhahan H, Zare-Hoseinabadi A, Ferdosi F, Ehtiati S, Heidari P, Dorostgou Z, Movahedpour A, Baktash A, Rajabivahid M, Khatami SH. Electrochemical biosensors for early detection of breast cancer. Clin Chim Acta 2025; 564:119923. [PMID: 39153652 DOI: 10.1016/j.cca.2024.119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | - Aria Baktash
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Saaidi R, Rodríguez-Villafuerte M, Alva-Sánchez H, Martínez-Dávalos A. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system. PLoS One 2024; 19:e0297829. [PMID: 38427663 PMCID: PMC10906883 DOI: 10.1371/journal.pone.0297829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification. In this work, we report the study of crystal scatter effects of a large-area dual-panel PEM system designed with either monolithic or pixelated lutetium yttrium orthosilicate (LYSO) crystals using the Monte Carlo simulation platform GATE. The results show that only a relatively small fraction of coincidences (~20%) arise from events where both coincidence photons undergo single interactions (mostly through photoelectric absorption) in the crystals. Most of the coincidences are events where at least one of the annihilation photons undergoes a chain of Compton scatterings: approximately 79% end up in photoelectric absorption while the rest (<1%) escape the detector. Mean positioning errors, calculated as the distance between first hit and energy weighted (assigned) positions of interaction, were 1.70 mm and 1.92 mm for the monolithic and pixelated crystals, respectively. Reconstructed spatial resolution quantification with a miniDerenzo phantom and a list mode iterative reconstruction algorithm shows that, for both crystal types, 2 mm diameter hot rods were resolved, indicating a relatively small effect in spatial resolution. A drastic reduction in peak-to-valley ratios for the same hot-rod diameters was observed, up to a factor of 14 for the monolithic crystals and 7.5 for the pixelated ones.
Collapse
Affiliation(s)
- Rahal Saaidi
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | | | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Arnulfo Martínez-Dávalos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| |
Collapse
|
3
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Abstract
Breast-specific positron imaging systems provide higher sensitivity than whole-body PET for breast cancer detection. The clinical applications for breast-specific positron imaging are similar to breast MRI including preoperative local staging and neoadjuvant therapy response assessment. Breast-specific positron imaging may be an alternative for patients who cannot undergo breast MRI. Further research is needed in expanding the field-of-view for posterior breast lesions, increasing biopsy capability, and reducing radiation dose. Efforts are also necessary for developing appropriate use criteria, increasing availability, and advancing insurance coverage.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin-Madison; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Kanae K Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Patel MM, Adrada BE, Fowler AM, Rauch GM. Molecular Breast Imaging and Positron Emission Mammography. PET Clin 2023; 18:487-501. [PMID: 37258343 DOI: 10.1016/j.cpet.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is growing interest in application of functional imaging modalities for adjunct breast imaging due to their unique ability to evaluate molecular/pathophysiologic changes, not visible by standard anatomic breast imaging. This has led to increased use of nuclear medicine dedicated breast-specific single photon and coincidence imaging systems for multiple indications, such as supplemental screening, staging of newly diagnosed breast cancer, evaluation of response to neoadjuvant treatment, diagnosis of local disease recurrence in the breast, and problem solving. Studies show that these systems maybe especially useful for specific subsets of patients, not well served by available anatomic breast imaging modalities.
Collapse
Affiliation(s)
- Miral M Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA.
| | - Beatriz Elena Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA
| | - Amy M Fowler
- Department of Radiology, Section of Breast Imaging and Intervention, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Gaiane M Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA; Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA
| |
Collapse
|
7
|
Gegios AR, Peterson MS, Fowler AM. Breast Cancer Screening and Diagnosis: Recent Advances in Imaging and Current Limitations. PET Clin 2023; 18:459-471. [PMID: 37296043 DOI: 10.1016/j.cpet.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Breast cancer detection has a significant impact on population health. Although there are many breast imaging modalities, mammography is the predominant tool for breast cancer screening. The introduction of digital breast tomosynthesis to mammography has contributed to increased cancer detection rates and decreased recall rates. In average-risk women, starting annual screening mammography at age 40 years has demonstrated the highest mortality reduction. In intermediate- and high-risk women as well as in those with dense breasts, additional modalities, including MRI, ultrasound, and molecular breast imaging, can also be considered for adjunct screening to improve the detection of mammographically occult malignancy.
Collapse
Affiliation(s)
- Alison R Gegios
- Section of Breast Imaging and Intervention, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Molly S Peterson
- Section of Breast Imaging and Intervention, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Amy M Fowler
- Section of Breast Imaging and Intervention, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Okamoto M, Hasegawa T, Oda K, Miyatake H, Kikuchi K, Inoue Y, Satoh Y, Inaoka Y, Kawamoto M, Shima K, Kanbayashi K, Yoshii M, Kanno T, Wagatsuma K, Hashimoto M. Dedicated phantom tools using traceable 68Ge/ 68Ga point-like sources for dedicated-breast PET and positron emission mammography scanners. Radiol Phys Technol 2023; 16:49-56. [PMID: 36622563 DOI: 10.1007/s12194-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/10/2023]
Abstract
Since the early 2000s, many types of positron emission tomography (PET) scanners dedicated to breast imaging for the diagnosis of breast cancer have been introduced. However, conventional performance evaluation methods developed for whole-body PET scanners cannot be used for such devices. In this study, we developed phantom tools for evaluating the quantitative accuracy of positron emission mammography (PEM) and dedicated-breast PET (dbPET) scanners using novel traceable point-like 68Ge/68 Ga sources. The PEM phantom consisted of an acrylic cube (100 × 100 × 40 mm) and three point-like sources. The dbPET phantom comprised an acrylic cylinder (ø100 × 100 mm) and five point-like sources. These phantoms were used for evaluating the fundamental responses of clinical PEM and dbPET scanners to point-like inputs in a medium. The results showed that reasonable recovery values were obtained based on region-of-interest analyses of the reconstructed images. The developed phantoms using traceable 68Ge/68 Ga point-like sources were useful for evaluating the physical characteristics of PEM and dbPET scanners. Thus, they offer a practical, reliable, and universal measurement scheme for evaluating various types of PET scanners using common sets of sealed sources.
Collapse
Affiliation(s)
- Mio Okamoto
- Juntendo University Hospital, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.,Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tomoyuki Hasegawa
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan. .,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Kei Kikuchi
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoko Satoh
- Yamanashi PET Imaging Clinic, 3046-2, Shimokato, Chuo, Yamanashi, 409-3821, Japan
| | - Yuichi Inaoka
- Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Masami Kawamoto
- Advanced Medical Center, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Koji Shima
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kenji Kanbayashi
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Miho Yoshii
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Tomoyuki Kanno
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kei Wagatsuma
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Masatoshi Hashimoto
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
9
|
Sanaat A, Jamalizadeh M, Khanmohammadi H, Arabi H, Zaidi H. Active-PET: a multifunctional PET scanner with dynamic gantry size featuring high-resolution and high-sensitivity imaging: a Monte Carlo simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Organ-specific PET scanners have been developed to provide both high spatial resolution and sensitivity, although the deployment of several dedicated PET scanners at the same center is costly and space-consuming. Active-PET is a multifunctional PET scanner design exploiting the advantages of two different types of detector modules and mechanical arms mechanisms enabling repositioning of the detectors to allow the implementation of different geometries/configurations. Active-PET can be used for different applications, including brain, axilla, breast, prostate, whole-body, preclinical and pediatrics imaging, cell tracking, and image guidance for therapy. Monte Carlo techniques were used to simulate a PET scanner with two sets of high resolution and high sensitivity pixelated Lutetium Oxyorthoscilicate (LSO(Ce)) detector blocks (24 for each group, overall 48 detector modules for each ring), one with large pixel size (4 × 4 mm2) and crystal thickness (20 mm), and another one with small pixel size (2 × 2 mm2) and thickness (10 mm). Each row of detector modules is connected to a linear motor that can displace the detectors forward and backward along the radial axis to achieve variable gantry diameter in order to image the target subject at the optimal/desired resolution and/or sensitivity. At the center of the field-of-view, the highest sensitivity (15.98 kcps MBq−1) was achieved by the scanner with a small gantry and high-sensitivity detectors while the best spatial resolution was obtained by the scanner with a small gantry and high-resolution detectors (2.2 mm, 2.3 mm, 2.5 mm FWHM for tangential, radial, and axial, respectively). The configuration with large-bore (combination of high-resolution and high-sensitivity detectors) achieved better performance and provided higher image quality compared to the Biograph mCT as reflected by the 3D Hoffman brain phantom simulation study. We introduced the concept of a non-static PET scanner capable of switching between large and small field-of-view as well as high-resolution and high-sensitivity imaging.
Collapse
|
10
|
Subhan MA, Muzibur Rahman M. Recent Development in Metallic Nanoparticles for Breast Cancer Therapy and Diagnosis. CHEM REC 2022; 22:e202100331. [PMID: 35146897 DOI: 10.1002/tcr.202100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Metal-based nanoparticles are very promising for their applications in cancer diagnosis, drug delivery and therapy. Breast cancer is the major reason of death in woman especially in developed countries including EU and USA. Due to the heterogeneity of cancer cells, nanoparticles are effective as therapeutics and diagnostics. Anti-cancer therapy of breast tumors is challenging because of highly metastatic progression of the disease to brain, bone, lung, and liver. Magnetic nanoparticles are crucial for metastatic breast cancer detection and protection. This review comprehensively discusses the application of nanomaterials as breast cancer therapy, therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology, 3114, Sylhet, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
An Analysis Scheme for 3D Visualization of Positron Emitting Radioisotopes Using Positron Emission Mammography System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton range monitoring and verification is important to enhance the effectiveness of treatment by ensuring that the correct dose is delivered to the correct location. Upon proton irradiation, different positron emitting radioisotopes are produced by the inelastic nuclear interactions of protons with the target elements. Recently, it was reported that the 16O(p,2p2n)13N reaction has a relatively low threshold energy, and it could be potentially used for proton range verification. In the present work, we have proposed an analysis scheme (i.e., algorithm) for the extraction and three-dimensional visualization of positron emitting radioisotopes. The proposed step-by-step analysis scheme was tested using our own experimentally obtained dynamic data from a positron emission mammography (PEM) system (our developed PEMGRAPH system). The experimental irradiation was performed using an azimuthally varying field (AVF) cyclotron with a 80 MeV monoenergetic pencil-like beam. The 3D visualization showed promising results for proton-induced radioisotope distribution. The proposed scheme and developed tools would be useful for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.
Collapse
|
12
|
Parihar AS, Bhattacharya A. Role of Nuclear Medicine in Breast Cancer. Breast Cancer 2022. [DOI: 10.1007/978-981-16-4546-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Samanta S, Jiang J, Hamdi M, Register AZ, Majewski S, Williams MB, Turkington TG, Tornai MP, Laforest R, O'Sullivan JA, Tai YC. Performance comparison of a dedicated total breast PET system with a clinical whole-body PET system: a simulation study. Phys Med Biol 2021; 66. [PMID: 33892480 DOI: 10.1088/1361-6560/abfb16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 11/12/2022]
Abstract
This paper presents a novel PET geometry for breast cancer imaging. The scanner consists of a 'stadium' (a rectangle with two semi-circles on opposite sides) shaped ring, along with anterior and posterior panels to provide high sensitivity and high spatial resolution for an imaging field-of-view (FOV) that include both breasts, mediastinum and axilla. We simulated this total-breast PET system using GATE and reconstructed the coincidence events using a GPU-based list-mode image reconstruction implementing maximum likelihood expectation-maximization (ML-EM) algorithm. The rear-panel is made up of a single layer of LSO crystals (3.2 × 3.2 × 20 mm3each), while the 'stadium'-shaped elongated ring and the anterior panel are made with dual-layered LSO crystals (1.6 × 1.6 × 6 mm3each). The energy resolution and coincidence resolving time of all detectors are assumed to be 12% and 250 ps full-width-at-half-maximum, respectively. Various sized simulated lesions (4, 5, 6 mm) having 4:1, 5:1, and 6:1 lesion-to-background radioactivity concentration ratios, mimicking different biological uptakes, were strategically located throughout a volumetric torso phantom. We compared system sensitivity and lesion detectability of the dedicated total-breast PET system to a state-of-the-art clinical whole-body PET scanner. The mean sensitivity of the total-breast PET system is 3.21 times greater than that of a whole-body PET scanner in the breast regions. The total-breast PET system also provides better contrast-recovery coefficients for lesions of all sizes and lesion-to-background ratios in the breast when compared to a reference clinical whole-body PET scanner. Receiver operating characteristics (ROC) study shows the area under the ROC curve is 0.948 and 0.924 for the total-breast system and the whole-body PET scanner, respectively, in the detection of 4 mm diameter lesions with 4:1 lesion-to-background ratio. This study demonstrates our novel geometry can provide an imaging FOV larger than conventional PEM systems to simultaneously image both breasts, chest wall and axillae with significantly improved lesion detectability in the breasts when compared to a whole-body PET scanner.
Collapse
Affiliation(s)
- Suranjana Samanta
- Department of Electrical Engineering, Washington University, St. Louis, MO, United States of America
| | - Jianyong Jiang
- Department of Radiology, Washington University, St. Louis, MO, United States of America
| | - Mahdjoub Hamdi
- Department of Radiology, Washington University, St. Louis, MO, United States of America
| | - Alan Z Register
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Stanislaw Majewski
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Mark B Williams
- Department of Radiology, University of Virginia, Charlottesville, VA, United States of America
| | - Timothy G Turkington
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Martin P Tornai
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Richard Laforest
- Department of Radiology, Washington University, St. Louis, MO, United States of America
| | - Joseph A O'Sullivan
- Department of Electrical Engineering, Washington University, St. Louis, MO, United States of America
| | - Yuan-Chuan Tai
- Department of Electrical Engineering, Washington University, St. Louis, MO, United States of America.,Department of Radiology, Washington University, St. Louis, MO, United States of America
| |
Collapse
|
14
|
Bhushan A, Gonsalves A, Menon JU. Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics 2021; 13:723. [PMID: 34069059 PMCID: PMC8156889 DOI: 10.3390/pharmaceutics13050723] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and effective treatment of all types of cancers are crucial for a positive prognosis. Patients with small tumor sizes at the time of their diagnosis have a significantly higher survival rate and a significantly reduced probability of the cancer being fatal. Therefore, many novel technologies are being developed for early detection of primary tumors, as well as distant metastases and recurrent disease, for effective breast cancer management. Theranostics has emerged as a new paradigm for the simultaneous diagnosis, imaging, and treatment of cancers. It has the potential to provide timely and improved patient care via personalized therapy. In nanotheranostics, cell-specific targeting moieties, imaging agents, and therapeutic agents can be embedded within a single formulation for effective treatment. In this review, we will highlight the different diagnosis techniques and treatment strategies for breast cancer management and explore recent advances in breast cancer theranostics. Our main focus will be to summarize recent trends and technologies in breast cancer diagnosis and treatment as reported in recent research papers and patents and discuss future perspectives for effective breast cancer therapy.
Collapse
Affiliation(s)
- Arya Bhushan
- Ladue Horton Watkins High School, St. Louis, MO 63124, USA;
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
15
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
16
|
Bläckberg L, Sajedi S, El Fakhri G, Sabet H. A layered single-side readout depth of interaction time-of-flight-PET detector. Phys Med Biol 2021; 66:045025. [PMID: 33570050 PMCID: PMC8130834 DOI: 10.1088/1361-6560/abd592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We are exploring a scintillator-based PET detector with potential of high sensitivity, depth of interaction (DOI) capability, and timing resolution, with single-side readout. Our design combines two previous concepts: (1) multiple scintillator arrays stacked with relative offset, yielding inherent DOI information, but good timing performance has not been demonstrated with conventional light sharing readout. (2) Single crystal array with one-to-one coupling to the photodetector, showing superior timing performance compared to its light sharing counterparts, but lacks DOI. The combination, where the first layer of a staggered design is coupled one-to-one to a photodetector array, may provide both DOI and timing resolution and this concept is here evaluated through light transport simulations. Results show that: (1) unpolished crystal pixels in the staggered configuration yield better performance across all metrics compared to polished pixels, regardless of readout scheme. (2) One-to-one readout of the first layer allows for accurate DOI extraction using a single threshold. The number of multi pixel photon counter (MPPC) pixels with signal amplitudes exceeding the threshold corresponds to the interaction layer. This approach was not possible with conventional light sharing readout. (3) With a threshold of 2 optical photons, the layered approach with one-to-one coupled first layer improves timing close to the MPPC compared to the conventional one-to-one coupling non-DOI detector, due to effectively reduced crystal thickness. Single detector timing resolution values of 91, 127, 151 and 164 ps were observed per layer in the 4-layer design, to be compared to 148 ps for the single array with one-to-one coupling. (4) For the layered design with light sharing readout, timing improves with increased MPPC pixel size due to higher signal per channel. In conclusion, the combination of straightforward DOI determination, good timing performance, and relatively simple design makes the proposed concept promising for DOI-Time-of-Flight PET detectors.
Collapse
Affiliation(s)
- L Bläckberg
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - S Sajedi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - G El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - H Sabet
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Lo WL, Liang CH, Chen LC, Lee SY, Lo SN, Chen MW, Lu RM, Liu IJ, Wu HC, Chang CH. Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice. Appl Radiat Isot 2020; 161:109162. [PMID: 32561130 DOI: 10.1016/j.apradiso.2020.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
The objective of this study was to evaluate radiolabeled DOTA-SP90 as a radiotracer for breast cancer. The in vitro competition assay showed that radiolabeled DOTA-SP90 had significant binding affinity to BT-483 cancer cells. Biodistribution, nanoSPECT/CT and nanoPET/CT imaging results indicated that radiolabeled DOTA-SP90 can accumulate in tumors. In addition, radiolabeled DOTA-SP90 peptides can also detect metastatic tumors. Therefore, radiolabeled SP90 peptide may provide the potential capability as diagnostic agent for breast cancer patients.
Collapse
Affiliation(s)
- Wei-Lin Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chen-Hsien Liang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Cheng Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Shih-Ying Lee
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Sheng-Nan Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Wei Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Meng F, Zhu S, Cheng J, Cao X, Qin W, Liang J. System Response Matrix Calculation Based on Distance-Driven Model and Solid Angle Model for Dual-Head PET System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2926580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Advanced approaches to imaging primary breast cancer: an update. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Narayanan D, Berg WA. Dedicated Breast Gamma Camera Imaging and Breast PET: Current Status and Future Directions. PET Clin 2018; 13:363-381. [PMID: 30100076 DOI: 10.1016/j.cpet.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in nuclear medicine instrumentation have led to the emergence of improved molecular imaging techniques to image breast cancer: dedicated gamma cameras using γ-emitting 99mTc-sestamibi and breast-specific PET cameras using 18F-fluorodeoxyglucose. This article focuses on the current role of such approaches in the clinical setting including diagnosis, assessing local extent of disease, monitoring response to therapy, and, for gamma camera imaging, possible supplemental screening in women with dense breasts. Barriers to clinical adoption and technologies and radiotracers under development are also discussed.
Collapse
Affiliation(s)
- Deepa Narayanan
- National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Wendie A Berg
- Department of Radiology, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, 300 Halket Street, Pittsburgh, PA 15213
| |
Collapse
|
21
|
Abstract
PET scanners are sophisticated and highly sensitive biomedical imaging devices that can produce highly quantitative images showing the 3-dimensional distribution of radiotracers inside the body. PET scanners are commonly integrated with x-ray CT or MRI scanners in hybrid devices that can provide both molecular imaging (PET) and anatomical imaging (CT or MRI). Despite decades of development, significant opportunities still exist to make major improvements in the performance of PET systems for a variety of clinical and research tasks. These opportunities stem from new ideas and concepts, as well as a range of enabling technologies and methodologies. In this paper, we review current state of the art in PET instrumentation, detectors and systems, describe the major limitations in PET as currently practiced, and offer our own personal insights into some of the recent and emerging technological innovations that we believe will impact the field. Our focus is on the technical aspects of PET imaging, specifically detectors and system design, and the opportunity and necessity to move closer to PET systems for diagnostic patient use and in vivo biomedical research that truly approach the physical performance limits while remaining mindful of imaging time, radiation dose, and cost. However, other key endeavors, which are not covered here, including innovations in reconstruction and modeling methodology, radiotracer development, and expanding the range of clinical and research applications, also will play an equally important, if not more important, role in defining the future of the field.
Collapse
Affiliation(s)
- Eric Berg
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, CA.; Department of Radiology, University of California, Davis, CA.
| |
Collapse
|
22
|
Abstract
PURPOSE To image the uptake of cobalamin (Cbl) within malignant breast tumors in vivo. PROCEDURES Prior to surgery 20 female patients with clinically suspected breast tumors were intravenously administered 0.25 μg of an In-111 labeled 5-deoxyadenosylcobalamin (AC) analog ([111In]AC) and sequentially imaged with whole-body planar (WBP) and single-photon emission computed tomography (SPECT) between 2-5 h and 20-24 h post-injection (P.I.). The tumor to background (T/B) ratio for [111In]AC in breast tumors at 2-5 h was correlated to its expression of estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors. Subsequent pulse chase (PC) experiments in nude mice burdened with the MDA-MB-231 triple-negative (TN) breast tumor xenograft measured the effect that pulses of AC or dexamethasone (DEX) had on [111In]AC uptake in both normal murine tissue and the TN breast tumor. RESULTS The mean [111In]AC T/B ratio of the patients' 18 resected tumors was 5.8. Comparing ER- and PR-positive tumors (n = 11) to TN and HER2-positive tumors (n = 7), the mean [111In]AC T/B ratios at 2-5 h P.I. were 3.2 (range 1.8-5.6) and 10.4 (range 3.3-22.5), respectively. Pulses of 2.0 μg of AC at 2, 8, or 24 h; or 40.0 μg of DEX at 24 h prior to injecting 0.5 μg of [111In]AC, increased mean tracer uptake in the MDA-MB-231 tumors by 26.4, 71.5, 92.6, and 49.1 %, respectively. Only the 2- and 24-h PC intervals concomitantly suppressed [111In]AC uptake in normal murine tissue while enhancing [111In]AC uptake in MDA-MB-231 tumors. CONCLUSION The uptake of Cbl within malignant breast tumors can be imaged clinically. Cbl uptake is greatest in TN and HER2-positive breast tumors. A solitary bolus of AC or DEX increases the [111In]AC uptake within a breast tumor in vivo. Investigating the cytogenetic mechanisms controlling the endocytosis of Cbl in malignant breast tumors is warranted.
Collapse
|
23
|
Hsu DFC, Freese DL, Reynolds PD, Innes DR, Levin CS. Design and Performance of a 1 mm 3 Resolution Clinical PET System Comprising 3-D Position Sensitive Scintillation Detectors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1058-1066. [PMID: 29621003 DOI: 10.1109/tmi.2018.2799619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We are developing a 1-mm3 resolution, high-sensitivity positron emission tomography (PET) system for loco-regional cancer imaging. The completed system will comprise two cm detector panels and contain 4 608 position sensitive avalanche photodiodes (PSAPDs) coupled to arrays of mm3 LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of cm. The sub-system performance parameters, such as energy, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have>99% crystal identification accuracy. The 511 keV photopeak energy resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom images shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effects.
Collapse
|
24
|
Nuvoli S, Galassi S, Gelo I, Rocchitta G, Fancellu A, Serra PA, Madeddu G, Spanu A. The role of molecular breast imaging in predicting complete tumor response to treatment and residual tumor extent following neoadjuvant therapy. Oncol Rep 2018; 39:2055-2062. [PMID: 29512735 PMCID: PMC5928762 DOI: 10.3892/or.2018.6299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/01/2018] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate the usefulness of molecular breast imaging (MBI) in predicting complete tumor response to treatment and residual tumor extent following neoadjuvant therapy. A consecutive series of 43 female patients with large or locally advanced primary breast cancer, scheduled for surgery following neoadjuvant therapy, was retrospectively reviewed. Prior to surgery, all patients underwent MBI using a high-resolution semiconductor-based device for image acquisition. MBI data were correlated with surgical histopathological findings. Spearman's correlation coefficient was calculated to assess differences in residual tumor size with MBI and histopathological examination. From the images obtained using MBI, 7 patients were negative for residual tumors with pathological complete response (specificity, 100%) and positive in 34/36 patients with residual disease (sensitivity, 94.4%), including 26/27 patients with unifocal and 8/9 patients with multicentric/multifocal tumors, 5 of which exhibited multiple microscopic foci scattered in a fibrotic area. Overall accuracy was 95.3% and the positive predictive value (PPV) and negative predictive value (NPV) were 100 and 77.8%, respectively. MBI was false-negative in one patient with a 2.5-cm invasive ductal carcinoma located close to the chest wall and in one patient with microscopic foci of epithelial carcinoma. In the patients with unifocal residual tumors, correlation of tumor size between MBI and histopathology was r=0.981 (P<0.0001); however, MBI overestimated the number of lesions in one of these cases. In the patients with multifocal/multicentric tumors, MBI adequately assessed residual tumor extent in 5/8 positive cases, overestimating the number of lesions in one case and underestimating tumor extent in 2 further cases with microscopic foci scattered in a fibrotic area. MBI proved to be a highly accurate diagnostic tool in predicting complete tumor response to neoadjuvant therapy and residual tumor extent, correlating with surgical histopathological findings in 86% of overall cases. A positive result was always associated with the presence of residual disease and MBI tumor size was strongly correlated with histopathological analysis mainly in unifocal residual tumors.
Collapse
Affiliation(s)
- Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Sarah Galassi
- Unit of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Ilaria Gelo
- Unit of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Gaia Rocchitta
- Unit of Pharmacology, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Alessandro Fancellu
- Unit of Surgery, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Pier Andrea Serra
- Unit of Pharmacology, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Giuseppe Madeddu
- Unit of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Clinical and Experimental Medicine, University of Sassari, I‑07100 Sassari, Italy
| |
Collapse
|
25
|
Slavine NV, Seiler SJ, McColl RW, Lenkinski RE. Image improvement method for positron emission mammography. Phys Med 2017; 39:164-173. [PMID: 28688583 DOI: 10.1016/j.ejmp.2017.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To evaluate in clinical use a rapidly converging, efficient iterative deconvolution algorithm (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by a commercial positron emission mammography (PEM) scanner. MATERIALS AND METHODS The RSEMD method was tested on imaging data from clinical Naviscan Flex Solo II PEM scanner. This method was applied to anthropomorphic like breast phantom data and patient breast images previously reconstructed with Naviscan software to determine improvements in image resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR). RESULTS In all of the patients' breast studies the improved images proved to have higher resolution, contrast and lower noise as compared with images reconstructed by conventional methods. In general, the values of CNR reached a plateau at an average of 6 iterations with an average improvement factor of about 2 for post-reconstructed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. CONCLUSIONS A rapidly converging, iterative deconvolution algorithm with a resolution subsets-based approach (RSEMD) that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to PEM images to enhance the resolution and contrast in cancer diagnosis to monitor the tumor progression at the earliest stages.
Collapse
Affiliation(s)
- Nikolai V Slavine
- Translational Research, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9061, USA.
| | - Stephen J Seiler
- Breast Imaging, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9061, USA
| | - Roderick W McColl
- Clinical Medical Physics, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9061, USA
| | - Robert E Lenkinski
- Translational Research, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9061, USA
| |
Collapse
|
26
|
Review: Receptor Targeted Nuclear Imaging of Breast Cancer. Int J Mol Sci 2017; 18:ijms18020260. [PMID: 28134770 PMCID: PMC5343796 DOI: 10.3390/ijms18020260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully.
Collapse
|
27
|
Potential Clinical Applications of 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Mammography in Breast Cancer. Nucl Med Mol Imaging 2016; 51:217-226. [PMID: 28878847 DOI: 10.1007/s13139-016-0446-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 01/30/2023] Open
Abstract
The whole-body positron emission tomography (PET)/magnetic resonance (MR) scan is a cutting edge technology providing comprehensive structural information from MR imaging and functional features from PET in a single session. Recent research findings and clinical experience have shown that 18F-fluorodeoxyglucose (FDG) whole-body PET/MR imaging has a diagnostic performance comparable with or superior to that of PET/CT in the field of oncology, including for breast cancer. In particular, FDG PET/MR mammography in the prone position with the breast hanging in a pendant manner can provide more comprehensive information about the metabolism, anatomy, and functional features of a breast lesion than a whole-body PET/MR scan. This article reports on current state-of-the-art PET/MR mammography in patients with breast cancer and the prospects for potential application in the future.
Collapse
|
28
|
Czernin J, Mankoff D. Introduction and Overview. J Nucl Med 2016; 57 Suppl 1:1S-2S. [PMID: 26834097 DOI: 10.2967/jnumed.115.157818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Johannes Czernin
- Department of Nuclear Medicine, UCLA School of Medicine, Los Angeles, California; and
| | - David Mankoff
- Division of Nuclear Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|