1
|
Xi Y, Sun Y, Gu B, Bian L, Song S. Evaluation of 68Ga-FAPI PET/CT and 18F-FDG PET/CT for the diagnosis of recurrent colorectal cancers. Clin Transl Radiat Oncol 2024; 49:100848. [PMID: 39290456 PMCID: PMC11405641 DOI: 10.1016/j.ctro.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Objective The present study aimed to compare the diagnostic value of gallium-68-labeled fibroblast activation protein inhibitor positron emission tomography/computed tomography (68Ga-FAPI PET/CT) and fluorine-18-labeled fluorodeoxyglucose PET/CT (18F-FDG PET/CT) for detecting recurrent colorectal cancers (CRCs). Materials and Methods Fifty-six patients (age: 18-80 years, 31 men and 25 women) with suspected recurrent CRC were enrolled and underwent 18F-FDG PET/CT and 68Ga-FAPI PET/CT sequentially within 1 week. The maximum standard uptake value (SUVmax), tumor-to-background ratio (TBR), and diagnostic accuracy were estimated and compared between the two modalities by using Student's t-test. The Wilcoxon signed-rank test was used to compare peritoneal carcinoma index (PCI) scores between the two imaging modalities. Results 68Ga-FAPI PET/CT showed higher sensitivity for detecting recurrence (93 % vs. 79 %); lymph node metastasis (89 % vs. 78 %), particularly peritoneal lymph node metastasis (92 % vs. 63 %); and metastatic implantation on the intestinal wall (100 % vs. 25 %) compared to 18F-FDG PET/CT. However, 68Ga-FAPI PET/CT showed lower sensitivity for detecting bone metastasis (67 % vs. 100 %). The mean SUVmax values of peritoneal metastases and metastatic implantation on the intestinal wall were 4.28 ± 2.70 and 7.58 ± 1.66 for 18F-FDG PET/CT and 5.66 ± 1.97 and 6.70 ± 0.25 for 68Ga-FAPI PET/CT, respectively. Furthermore, 68Ga-FAPI PET/CT showed significantly higher TBR for peritoneal metastatic lesions (4.22 ± 1.47 vs. 1.41 ± 0.89, p < 0.0001) and metastatic implantation on the intestinal wall (5.63 ± 1.24 vs. 2.20 ± 0.5, p = 0.02) compared to 18F-FDG PET/CT. For the same patient, 68Ga-FAPI PET/CT yielded a more accurate PCI score and a greater area under the curve value for the receiver operating characteristic curve (p < 0.01) than 18F-FDG PET/CT. Conclusion 68Ga-FAPI PET/CT was superior to 18F-FDG PET/CT for detecting recurrence and peritoneal metastases. Hence, we propose the combination of these two modalities for better clinical diagnosis and management of patients with CRC.
Collapse
Affiliation(s)
- Yue Xi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Yuyun Sun
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Linjie Bian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| |
Collapse
|
2
|
Yue C, Xue H. Construction and validation of a nomogram model for lymph node metastasis of stage II-III gastric cancer based on machine learning algorithms. Front Oncol 2024; 14:1399970. [PMID: 39439953 PMCID: PMC11493538 DOI: 10.3389/fonc.2024.1399970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background Gastric cancer, a pervasive malignancy globally, often presents with regional lymph node metastasis (LNM), profoundly impacting prognosis and treatment options. Existing clinical methods for determining the presence of LNM are not precise enough, necessitating the development of an accurate risk prediction model. Objective Our primary objective was to employ machine learning algorithms to identify risk factors for LNM and establish a precise prediction model for stage II-III gastric cancer. Methods A study was conducted at Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine between May 2010 and December 2022. This retrospective study analyzed 1147 surgeries for gastric cancer and explored the clinicopathological differences between LNM and non-LNM cohorts. Utilizing univariate logistic regression and two machine learning methodologies-Least absolute shrinkage and selection operator (LASSO) and random forest (RF)-we identified vascular invasion, maximum tumor diameter, percentage of monocytes, hematocrit (HCT), and lymphocyte-monocyte ratio (LMR) as salient factors and consolidated them into a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curves were used to evaluate the test efficacy of the nomogram. Shapley Additive Explanation (SHAP) values were utilized to illustrate the predictive impact of each feature on the model's output. Results Significant differences in tumor characteristics were discerned between LNM and non-LNM cohorts through appropriate statistical methods. A nomogram, incorporating vascular invasion, maximum tumor diameter, percentage of monocytes, HCT, and LMR, was developed and exhibited satisfactory predictive capabilities with an AUC of 0.787 (95% CI: 0.749-0.824) in the training set and 0.753 (95% CI: 0.694-0.812) in the validation set. Calibration curves and decision curves affirmed the nomogram's predictive accuracy. Conclusion In conclusion, leveraging machine learning algorithms, we devised a nomogram for precise LNM risk prognostication in stage II-III gastric cancer, offering a valuable tool for tailored risk assessment in clinical decision-making.
Collapse
Affiliation(s)
| | - Huiping Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yang J, Wu Y, Zhang Y, Peng X, Jiang C, Zhou W, Dai J, Xie A, Ye H, Zheng K. Comparative assessment of the diagnostic efficacy of [ 18F]AlF-NOTA-FAPI-04 and [ 18F]FDG PET/CT imaging for detecting postoperative recurrence in gastric cancer patients: a pilot study. Front Oncol 2024; 14:1427649. [PMID: 39323998 PMCID: PMC11422010 DOI: 10.3389/fonc.2024.1427649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose This study aimed to compare the efficacy of [18F]AlF-NOTA-FAPI-04 PET/CT with that of [18F]FDG PET/CT for detecting postoperative recurrence in patients with gastric cancer. Methods This single-center retrospective clinical study was performed at Hunan Cancer Hospital between December 2020 and June 2022. The participants underwent both [18F]AlF-NOTA-FAPI-04 and [18F]FDG within 14 days. Histopathologic examination, morphological imaging, and/or follow-up imaging were used as a reference for the final diagnosis. We recorded the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of [18F]AlF-NOTA-FAPI-04 and [18F]FDG PET/CT for detecting local recurrence, lymph node metastasis and distant metastasis. The SUVmax and background ratio (TBR) of local recurrence and metastases between [18F]FDG and [18F]AlF-NOTA-FAPI-04 PET/CT were compared using paired-sample t tests. Results Forty-seven patients (27 males, aged 25-68 years) with gastric cancer after curative resection (27 with adenocarcinoma, 17 with signet ring cell carcinoma and 4 with mucinous adenocarcinoma) were included in the study. [18F]AlF-NOTA-FAPI-04 accumulation was significantly greater than that of [18F]FDG in terms of local recurrence (SUVmax, 11.65 vs 3.48, p< 0.0001; TBR, 12.93 vs 2.94, p< 0.0001), lymph node metastasis (SUVmax, 13.45 vs 3.05, p=0.003875; TBR, 12.43 vs 2.21, p=0.001661), and distant metastasis (SUVmax, 11.89 vs 2.96, p < 0.0001; TBR, 13.32 vs 2.32, p< 0.0001). Despite no statistical comparison was made with [18F]FDG, [18F]AlF-NOTA-FAPI-04 imaging exhibited high levels of sensitivity, specificity, PPV, NPV, and accuracy for detecting postoperative local recurrence, lymph node metastasis, and distant metastasis in patients with gastric cancer. Conclusion [18F]AlF-NOTA-FAPI-04 has demonstrated potential for more accurate tumor re-evaluation in GC, thus enhancing treatment decision-making.
Collapse
Affiliation(s)
- Jian Yang
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Yong Wu
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Yanyin Zhang
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Xiang Peng
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Chengzhi Jiang
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Wanjing Zhou
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Jiashun Dai
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Aimin Xie
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Hui Ye
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| | - Kai Zheng
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital Of Xiangya School Of Medicine, Central South University, Changsha, China
| |
Collapse
|
4
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Choi CI, Park JK, Jeon TY, Kim DH. Diagnostic performance of F-18 FDG PET or PET/CT for detection of recurrent gastric cancer: a systematic review and meta-analysis. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:S37-S46. [PMID: 37587035 DOI: 10.12701/jyms.2023.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/08/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND This systematic review and meta-analysis investigated the diagnostic performance of F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) or PET/computed tomography (PET/CT) for the detection of disease recurrence after curative resection of gastric cancer. METHODS The PubMed and Embase databases, from the earliest available date of indexing through November 30, 2019, were searched for studies evaluating the diagnostic performance of F-18 FDG PET or PET/CT to detect recurrent disease after gastric cancer surgery. RESULTS Across 17 studies (1,732 patients), the pooled sensitivity for F-18 FDG PET or PET/CT was 0.82 (95% confidence interval [CI], 0.74-0.88) with heterogeneity of I2=76.5 (p<0.001), and the specificity was 0.86 (95% CI, 0.78-0.91) with heterogeneity of I2=94.2 (p<0.001). Likelihood ratio (LR) tests gave an overall positive LR of 6.0 (95% CI, 3.6-9.7) and negative LR of 0.2 (95% CI, 0.14-0.31). The pooled diagnostic odds ratio was 29 (95% CI, 13-63). The summary receiver operating characteristic curve indicates that the area under the curve was 0.91 (95% CI, 0.88-0.93). CONCLUSION The current meta-analysis showed good sensitivity and specificity of F-18 FDG PET or PET/CT for detecting recurrent disease after curative resection of gastric cancer despite heterogeneity in ethnicity, recurrence rate, histology, and interpretation method.
Collapse
Affiliation(s)
- Chang In Choi
- Department of Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan, Korea
| | - Jae Kyun Park
- Department of Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan, Korea
| | - Tae Yong Jeon
- Department of Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan, Korea
| | - Dae-Hwan Kim
- Department of Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan, Korea
| |
Collapse
|
6
|
Pullen LCE, Noortman WA, Triemstra L, de Jongh C, Rademaker FJ, Spijkerman R, Kalisvaart GM, Gertsen EC, de Geus-Oei LF, Tolboom N, de Steur WO, Dantuma M, Slart RHJA, van Hillegersberg R, Siersema PD, Ruurda JP, van Velden FHP, Vegt E. Prognostic Value of [ 18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer-A Side Study of the Prospective Multicentre PLASTIC Study. Cancers (Basel) 2023; 15:cancers15112874. [PMID: 37296837 DOI: 10.3390/cancers15112874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
AIM To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [18F]FDG-PET radiomics. METHODS [18F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and distant metastases. To exclude features with high mutual correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on Lauren classification were performed. RESULTS None of the models could identify metastases with low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively. Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup analysis of diffuse-type tumours did not improve the classification performance. CONCLUSION Overall, [18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type tumours, the classification performance of the clinical model slightly improved with the addition of radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.
Collapse
Affiliation(s)
- Lieke C E Pullen
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Wyanne A Noortman
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Lianne Triemstra
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Cas de Jongh
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Fenna J Rademaker
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Romy Spijkerman
- TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Gijsbert M Kalisvaart
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Emma C Gertsen
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Wobbe O de Steur
- Department of Surgery, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Maura Dantuma
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Riemer H J A Slart
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Peter D Siersema
- Department of Gastroenterology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jelle P Ruurda
- Department of Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Floris H P van Velden
- Department of Radiology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Wang J, Kang B, Sun C, Du F, Lin J, Ding F, Dai Z, Zhang Y, Yang C, Shang L, Li L, Hong Q, Huang C, Wang G. CT-based radiomics nomogram for differentiating gastric hepatoid adenocarcinoma from gastric adenocarcinoma: a multicentre study. Expert Rev Gastroenterol Hepatol 2023; 17:205-214. [PMID: 36625225 DOI: 10.1080/17474124.2023.2166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND To develop a CT-based radiomics nomogram for the high-precision preoperative differentiation of gastric hepatoid adenocarcinoma (GHAC) patients from gastric adenocarcinoma (GAC) patients. RESEARCH DESIGN AND METHODS 108 patients with GHAC from 6 centers and 108 GAC patients matched by age, sex and T stage undergoing pathological examination were retrospectively reviewed. Patients from 5 centers were divided into two cohorts (training and internal validation) at a 7:3 ratio, the remaining patients were external test cohort. Venous-phase CT images were retrieved for tumor segmentation and feature extraction. A radiomics model was developed by the least absolute shrinkage and selection operator method. The nomogram was developed by clinical factors and the radiomics score. RESULTS 1409 features were extracted and a radiomics model consisting of 19 features was developed, which showed a favorable performance in discriminating GHAC from GAC (AUCtraining cohort = 0.998, AUCinternal validation set = 0.942, AUCexternal test cohort = 0.731). The radiomics nomogram, including the radiomics score, AFP, and CA72_4, achieved good calibration and discrimination (AUCtraining cohort = 0.998, AUCinternal validation set = 0.954, AUCexternal test cohort = 0.909). CONCLUSIONS The noninvasive CT-based nomogram, including radiomics score, AFP, and CA72_4, showed favorable predictive efficacy for differentiating GHAC from GAC and might be useful for clinical decision-making.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Bing Kang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fanghui Ding
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd,Beijing, China
| | - Yifei Zhang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong, China
| | - Chenggang Yang
- Department of Gastrointestinal Surgery, Liaocheng people's hospital, Liaocheng, Shandong, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqi Hong
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,The School of Clinical Medicine, Fujian Medical University, The Graduate School of Fujian Medical University, Xiamen, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Kim TH, Kim IH, Kang SJ, Choi M, Kim BH, Eom BW, Kim BJ, Min BH, Choi CI, Shin CM, Tae CH, Gong CS, Kim DJ, Cho AEH, Gong EJ, Song GJ, Im HS, Ahn HS, Lim H, Kim HD, Kim JJ, Yu JI, Lee JW, Park JY, Kim JH, Song KD, Jung M, Jung MR, Son SY, Park SH, Kim SJ, Lee SH, Kim TY, Bae WK, Koom WS, Jee Y, Kim YM, Kwak Y, Park YS, Han HS, Nam SY, Kong SH. Korean Practice Guidelines for Gastric Cancer 2022: An Evidence-based, Multidisciplinary Approach. J Gastric Cancer 2023; 23:3-106. [PMID: 36750993 PMCID: PMC9911619 DOI: 10.5230/jgc.2023.23.e11] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Gastric cancer is one of the most common cancers in Korea and the world. Since 2004, this is the 4th gastric cancer guideline published in Korea which is the revised version of previous evidence-based approach in 2018. Current guideline is a collaborative work of the interdisciplinary working group including experts in the field of gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology and guideline development methodology. Total of 33 key questions were updated or proposed after a collaborative review by the working group and 40 statements were developed according to the systematic review using the MEDLINE, Embase, Cochrane Library and KoreaMed database. The level of evidence and the grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation proposition. Evidence level, benefit, harm, and clinical applicability was considered as the significant factors for recommendation. The working group reviewed recommendations and discussed for consensus. In the earlier part, general consideration discusses screening, diagnosis and staging of endoscopy, pathology, radiology, and nuclear medicine. Flowchart is depicted with statements which is supported by meta-analysis and references. Since clinical trial and systematic review was not suitable for postoperative oncologic and nutritional follow-up, working group agreed to conduct a nationwide survey investigating the clinical practice of all tertiary or general hospitals in Korea. The purpose of this survey was to provide baseline information on follow up. Herein we present a multidisciplinary-evidence based gastric cancer guideline.
Collapse
Affiliation(s)
- Tae-Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Joo Kang
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center Seoul, Seoul, Korea
| | - Miyoung Choi
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Bang Wool Eom
- Center for Gastric Cancer, National Cancer Center, Goyang, Korea
| | - Bum Jun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Korea
| | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Seoul, Korea
| | - Chang In Choi
- Department of Surgery, Pusan National University Hospital, Pusan, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seungnam, Korea
| | - Chung Hyun Tae
- Department of Internal Medicine, Ewha Woman's University College of Medicine, Seoul, Korea
| | - Chung Sik Gong
- Division of Gastrointestinal Surgery, Department of Surgery, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Jin Kim
- Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Geum Jong Song
- Department of Surgery, Soonchunhyang University, Cheonan, Korea
| | - Hyeon-Su Im
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hye Seong Ahn
- Department of Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hyun Lim
- Department of Gastroenterology, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Joon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jeong Won Lee
- Department of Nuclear Medicine, Catholic Kwandong University, College of Medicine, Incheon, Korea
| | - Ji Yeon Park
- Department of Surgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jwa Hoon Kim
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyoung Doo Song
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Minkyu Jung
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, Korea
| | - Mi Ran Jung
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Shin-Hoo Park
- Department of Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Soo Jin Kim
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyun Bae
- Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yeseob Jee
- Department of Surgery, Dankook University Hospital, Cheonan, Korea
| | - Yoo Min Kim
- Department of Surgery, Severance Hospital, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea.
| | - Su Youn Nam
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital and Seoul National University College of Medicine Cancer Research Institute, Seoul, Korea.
| |
Collapse
|
9
|
Ma D, Zhang Y, Shao X, Wu C, Wu J. PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer. Curr Oncol 2022; 29:6523-6539. [PMID: 36135082 PMCID: PMC9497704 DOI: 10.3390/curroncol29090513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
A portion of gastric cancer patients with negative lymph node metastasis at an early stage eventually die from tumor recurrence or advanced metastasis. Occult lymph node metastasis (OLNM] is a potential risk factor for the recurrence and metastasis in these patients, and it is highly important for clinical prognosis. Positron emission tomography (PET)/computed tomography (CT) is used to assess lymph node metastasis in gastric cancer due to its advantages in anatomical and functional imaging and non-invasive nature. Among the major metabolic parameters of PET, the maximum standardized uptake value (SUVmax) is commonly used for examining lymph node status. However, SUVmax is susceptible to interference by a variety of factors. In recent years, the exploration of new PET metabolic parameters, new PET imaging agents and radiomics, has become an active research topic. This paper aims to explore the feasibility and predict the effectiveness of using PET/CT to detect OLNM. The current landscape and future trends of primary metabolic parameters and new imaging agents of PET are reviewed. For gastric cancer patients, the possibility to detect OLNM non-invasively will help guide surgeons to choose the appropriate lymph node dissection area, thereby reducing unnecessary dissections and providing more reasonable, personalized and comprehensive treatments.
Collapse
Affiliation(s)
- Danyu Ma
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ying Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
- Correspondence: (C.W.); (J.W.)
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Correspondence: (C.W.); (J.W.)
| |
Collapse
|
10
|
Fu L, Huang S, Wu H, Dong Y, Xie F, Wu R, Zhou K, Tang G, Zhou W. Superiority of [ 68Ga]Ga-FAPI-04/[ 18F]FAPI-42 PET/CT to [ 18F]FDG PET/CT in delineating the primary tumor and peritoneal metastasis in initial gastric cancer. Eur Radiol 2022; 32:6281-6290. [PMID: 35380229 DOI: 10.1007/s00330-022-08743-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to compare [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in the evaluation of initial gastric cancer. METHODS We retrospectively compared [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in patients with initial gastric cancer from September 2020 to March 2021. Lesion detectability and the uptake of lesions quantified by the maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) were compared between the two modalities using the Wilcoxon signed-rank test, Mann-Whitney U test, and McNemar's chi-square test. RESULTS A total of 61 patients (37 males, aged 23-81 years) were included, of which 22 underwent radical gastrectomy. For primary lesions, higher uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 was observed compared to [18F]FDG (median SUVmax, 14.60 vs 4.35, p < 0.001), resulting in higher positive detection using [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT than [18F]FDG PET/CT (95.1% vs 73.8%, p < 0.001), particularly for tumors with signet-ring cell carcinoma (SRCC) (96.4% vs 57.1%, p < 0.001). [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT detected more positive lymph nodes than [18F]FDG PET/CT (637 vs 407). However, both modalities underestimated N staging compared to pathological N staging. [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT showed a higher sensitivity (92.3% vs 53.8%, p = 0.002) and peritoneal cancer index score (18 vs 3, p < 0.001) in peritoneum metastasis and other suspect metastases compared to [18F]FDG PET/CT. CONCLUSION Our findings indicate that [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT outperformed [18F]FDG PET/CT in the evaluation of primary tumors with SRCC and peritoneum metastasis in initial gastric cancer. However, no clinically useful improvement was seen in N staging. KEY POINTS • The uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 in primary tumor and metastasis was intensely higher than that of [18F]FDG (p < 0.001) in 61 patients with initial gastric cancer. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT had a higher sensitivity detection in primary tumors (95.1% vs 73.8%, p < 0.001) and peritoneal metastases (92.3% vs 53.8%, p = 0.002) than [18F]FDG PET/CT. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT depicted more positive lymph nodes than [18F]FDG PET/CT (637 vs 407); however, both underestimated N staging compared to pathological N staging.
Collapse
Affiliation(s)
- Lilan Fu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Ye Dong
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Fei Xie
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Ruihe Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Kemin Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China.
| | - Wenlan Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
11
|
Lepareur N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front Med (Lausanne) 2022; 9:812050. [PMID: 35223907 PMCID: PMC8869247 DOI: 10.3389/fmed.2022.812050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last couple of decades, gallium-68 (68Ga) has gained a formidable interest for PET molecular imaging of various conditions, from cancer to infection, through cardiac pathologies or neuropathies. It has gained routine use, with successful radiopharmaceuticals such as somatostatin analogs ([68Ga]Ga-DOTATOC and [68Ga]GaDOTATATE) for neuroendocrine tumors, and PSMA ligands for prostate cancer. It represents a major clinical impact, particularly in the context of theranostics, coupled with their 177Lu-labeled counterparts. Beside those, a bunch of new 68Ga-labeled molecules are in the preclinical and clinical pipelines, with some of them showing great promise for patient care. Increasing clinical demand and regulatory issues have led to the development of automated procedures for the production of 68Ga radiopharmaceuticals. However, the widespread use of these radiopharmaceuticals may rely on simple and efficient radiolabeling methods, undemanding in terms of equipment and infrastructure. To make them technically and economically accessible to the medical community and its patients, it appears mandatory to develop a procedure similar to the well-established kit-based 99mTc chemistry. Already available commercial kits for the production of 68Ga radiopharmaceuticals have demonstrated the feasibility of using such an approach, thus paving the way for more kit-based 68Ga radiopharmaceuticals to be developed. This article discusses the development of 68Ga cold kit radiopharmacy, including technical issues, and regulatory aspects.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, France
- Univ Rennes, Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, Rennes, France
| |
Collapse
|
12
|
Prospective evaluation of metabolic intratumoral heterogeneity in patients with advanced gastric cancer receiving palliative chemotherapy. Sci Rep 2021; 11:296. [PMID: 33436659 PMCID: PMC7804009 DOI: 10.1038/s41598-020-78963-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Although metabolic intratumoral heterogeneity (ITH) gives important value on treatment responses and prognoses, its association with treatment outcomes have not been reported in gastric cancer (GC). We aimed to evaluate temporal changes in metabolic ITH and the associations with treatment responses, progression-free survival (PFS), and overall survival (OS) in advanced GC patients. Eighty-five patients with unresectable, locally advanced, or metastatic GC were prospectively enrolled before the first-line palliative chemotherapy and underwent [18F]FDG PET at baseline (TP1) and the first response follow-up evaluation (TP2). Standardized uptake values (SUVs), volumetric parameters, and textural features were evaluated in primary gastric tumor at TP1 and TP2. Of 85 patients, 44 had partial response, 33 had stable disease, and 8 progressed. From TP1 to TP2, metabolic ITH was significantly reduced (P < 0.01), and the degree of the decrease was greater in responders than in non-responders (P < 0.01). Using multiple Cox regression analyses, a low SUVmax at TP2, a high kurtosis at TP2 and larger decreases in the coefficient of variance were associated with better PFS. A low SUVmax at TP2, larger decreases in the metabolic tumor volume and larger decreased in the energy were associated with better OS. Age older than 60 years and responders also showed better OS. An early reduction in metabolic ITH is useful to predict treatment outcomes in advanced GC patients.
Collapse
|
13
|
Kim SH, Song BI, Kim HW, Won KS, Son YG, Ryu SW. Prognostic Value of Restaging F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography to Predict 3-Year Post-Recurrence Survival in Patients with Recurrent Gastric Cancer after Curative Resection. Korean J Radiol 2020; 21:829-837. [PMID: 32524783 PMCID: PMC7289695 DOI: 10.3348/kjr.2019.0672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the prognostic value of the maximum standardized uptake value (SUVmax) measured while restaging with F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) to predict the 3-year post-recurrence survival (PRS) in patients with recurrent gastric cancer after curative surgical resection. MATERIALS AND METHODS In total, 47 patients with recurrent gastric cancer after curative resection who underwent restaging with 18F-FDG PET/CT were included. For the semiquantitative analysis, SUVmax was measured over the visually discernable 18F-FDG-avid recurrent lesions. Cox proportional-hazards regression models were used to predict the 3-year PRS. Differences in 3-year PRS were assessed with the Kaplan-Meier analysis. RESULTS Thirty-nine of the 47 patients (83%) expired within 3 years after recurrence in the median follow-up period of 30.3 months. In the multivariate analysis, SUVmax (p = 0.012), weight loss (p = 0.025), and neutrophil count (p = 0.006) were significant prognostic factors for 3-year PRS. The Kaplan-Meier curves demonstrated significantly poor 3-year PRS in patients with SUVmax > 5.1 than in those with SUVmax ≤ 5.1 (3-year PRS rate, 3.5% vs. 38.9%, p < 0.001). CONCLUSION High SUVmax on restaging with 18F-FDG PET/CT is a poor prognostic factor for 3-year PRS. It may strengthen the role of 18F-FDG PET/CT in further stratifying the prognosis of recurrent gastric cancer.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Nuclear Medicine, Keimyung University Daegu Dongsan Hospital, Daegu, Korea.,Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Bong Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea.
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Young Gil Son
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Seung Wan Ryu
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
14
|
PET in Gastrointestinal, Pancreatic, and Liver Cancers. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Should 18F-FDG PET/CT Be Routinely Performed in the Clinical Staging of Locally Advanced Gastric Adenocarcinoma? Clin Nucl Med 2018; 43:402-410. [PMID: 29485442 DOI: 10.1097/rlu.0000000000002028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to evaluate F-FDG PET/CT compared with conventional imaging techniques in the clinical management of patients with locally advanced gastric cancer (LAGC). METHODS A prospective study between January 2010 and December 2011 in patients with suspected LAGC was conducted in our hospital. F-FDG PET/CT, contrast-enhanced CT (CECT), endoscopic ultrasound, and laparoscopy were performed in all cases. Standard whole-body F-FDG PET/CT images were obtained centered on the stomach at 1 and 2 hours after injection of 4.0 MBq/kg of F-FDG. Findings were confirmed by histopathology or by imaging follow-up in nonoperable patients. RESULTS Fifty consecutive patients with confirmed LAGC (20 women, 30 men) with a mean ± SD age of 65.7 ± 12.1 years were included. Using Lauren classification, 24 patients were intestinal subtype, and 26 were diffuse subtype. Thirty-five patients with locoregional lymph node involvement and 22 with distant metastases were confirmed as peritoneal metastases (n = 15), retroperitoneal (n = 2) or mediastinal lymph nodes (n = 1), and liver (n = 3) or bone metastases (n = 1). Patients with signet ring carcinoma showed significantly less F-FDG uptake (P = 0.001). SUVmax correlated with tumor grading (P < 0.05). Standard and delayed F-FDG PET/CT and CECT images identified LAGC in 24, 27, and 28 of 30 patients, respectively. The sensitivity and specificity for F-FDG PET/CT and CECT to detect metastases were 68% and 100% and 64% and 93%, respectively. Contrast-enhanced CT and F-FDG PET/CT diagnosed only 6 of the 15 patients with confirmed peritoneal metastases. The impact in therapeutic management of F-FDG PET/CT and CECT was 24% and 22%, respectively. Kaplan-Meier survival curves for the LGAC showed a significant correlation between SUVmax and overall survival using an SUVmax threshold of less than 3.96 (P = 0.04). CONCLUSIONS F-FDG PET/CT should be recommended for staging of LAGC; however, F-FDG PET/CT and CECT cannot replace laparoscopy to rule out peritoneal metastases. Delayed F-FDG PET/CT images show an increase of F-FDG uptake in most cases, improving LAGC detection. The grade of F-FDG uptake represents a significant prognostic tool in this series.
Collapse
|
16
|
Optical Imaging with Signal Processing for Non-invasive Diagnosis in Gastric Cancer: Nonlinear Optical Microscopy Modalities. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-981-13-0923-6_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Abstract
Gastric cancer is a disease with low survival rates and high morbidity, requiring accurate and prompt diagnosis and treatment. Although limited in the evaluation of the primary tumor as such, the metabolic information of primary tumors in an 18F-FDG PET/CT study can assist in surgical and treatment planning and differentiating gastric cancers. It detects nodal disease with good specificity and positive predictive value, thus enabling appropriate therapy for individual patients. It provides valuable information about distant metastases, altering therapy decisions. It has reasonably good performance in detecting recurrent disease and in the follow-up of patients.
Collapse
|