1
|
Oyeniran O, Liu L, Raymond C, Moyaert P, Kovacs MS, Anazodo UC, Hicks JW. Automated, Transferable, and Ethanol-Free Radiosynthesis of [ 11C]Butanol. ACS Chem Neurosci 2024; 15:3535-3542. [PMID: 39268711 DOI: 10.1021/acschemneuro.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Cerebral blood flow and blood-brain barrier permeability assessment are crucial hemodynamic parameters to measure under neurological conditions. In conjunction with positron emission tomography (PET), oxygen-15-labeled water has emerged as a gold standard for measuring cerebral perfusion; however, at higher flow rates, [15O]water extraction becomes nonlinear. In such a scenario, freely diffusible [11C]butanol can provide a truer estimate. Radiosyntheses of [11C]butanol reported to date are protracted, are not automated, or require ethanol in the final formulation. By using a flow-based, captive solvent approach on a commercially available radiosynthesizer, we automated and reduced the synthesis time to 28 min. Forgoing cartridge-based purification for an aqueous high-performance liquid chromatography method, we obtained high purity [11C]butanol in ethanol-free phosphate buffered saline in sufficient yields for clinical PET studies. We here report our expedited, automated, and ethanol-free radiosynthesis of [11C]butanol along with preliminary imaging of a porcine subject.
Collapse
Affiliation(s)
- Olujide Oyeniran
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
- Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
| | - Linshan Liu
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
| | - Confidence Raymond
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
| | - Paulien Moyaert
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
- Department of Diagnostic Science, University of Ghent, Ghent 9000, Belgium
| | - Michael S Kovacs
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
- Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
- Department of Medical Imaging, Western University, London, Ontario N6A 5C1, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Udunna C Anazodo
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
- Montreal Neurological Institute, Montreal, Ontario H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Justin W Hicks
- Lawson Research Institute, Saint Joseph's Health Care London, London, Ontario N6C 2R5, Canada
- Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
2
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Chalifoux N, Ko T, Slovis J, Spelde A, Kilbaugh T, Mavroudis CD. Cerebral Autoregulation: A Target for Improving Neurological Outcomes in Extracorporeal Life Support. Neurocrit Care 2024:10.1007/s12028-024-02002-5. [PMID: 38811513 DOI: 10.1007/s12028-024-02002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Despite improvements in survival after illnesses requiring extracorporeal life support, cerebral injury continues to hinder successful outcomes. Cerebral autoregulation (CA) is an innate protective mechanism that maintains constant cerebral blood flow in the face of varying systemic blood pressure. However, it is impaired in certain disease states and, potentially, following initiation of extracorporeal circulatory support. In this review, we first discuss patient-related factors pertaining to venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) and their potential role in CA impairment. Next, we examine factors intrinsic to ECMO that may affect CA, such as cannulation, changes in pulsatility, the inflammatory and adaptive immune response, intracranial hemorrhage, and ischemic stroke, in addition to ECMO management factors, such as oxygenation, ventilation, flow rates, and blood pressure management. We highlight potential mechanisms that lead to disruption of CA in both pediatric and adult populations, the challenges of measuring CA in these patients, and potential associations with neurological outcome. Altogether, we discuss individualized CA monitoring as a potential target for improving neurological outcomes in extracorporeal life support.
Collapse
Affiliation(s)
- Nolan Chalifoux
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Tiffany Ko
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Spelde
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Fettahoglu A, Zhao M, Khalighi M, Vossler H, Jovin M, Davidzon G, Zeineh M, Boada F, Mormino E, Henderson VW, Moseley M, Chen KT, Zaharchuk G. Early-Frame [ 18F]Florbetaben PET/MRI for Cerebral Blood Flow Quantification in Patients with Cognitive Impairment: Comparison to an [ 15O]Water Gold Standard. J Nucl Med 2024; 65:306-312. [PMID: 38071587 PMCID: PMC10858379 DOI: 10.2967/jnumed.123.266273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/24/2023] [Indexed: 02/03/2024] Open
Abstract
Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 β-amyloid negative and 10 β-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.
Collapse
Affiliation(s)
- Ates Fettahoglu
- Department of Radiology, Stanford University, Stanford, California
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Stanford University, Stanford, California
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Maria Jovin
- Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| | - Fernando Boada
- Department of Radiology, Stanford University, Stanford, California
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, California
| | - Kevin T Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
5
|
Kas A, Rozenblum L, Pyatigorskaya N. Clinical Value of Hybrid PET/MR Imaging: Brain Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:591-604. [PMID: 37741643 DOI: 10.1016/j.mric.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MR imaging offers a unique opportunity to acquire MR imaging and PET information during a single imaging session. PET/MR imaging has numerous advantages, including enhanced diagnostic accuracy, improved disease characterization, and better treatment planning and monitoring. It enables the immediate integration of anatomic, functional, and metabolic imaging information, allowing for personalized characterization and monitoring of neurologic diseases. This review presents recent advances in PET/MR imaging and highlights advantages in clinical practice for neuro-oncology, epilepsy, and neurodegenerative disorders. PET/MR imaging provides valuable information about brain tumor metabolism, perfusion, and anatomic features, aiding in accurate delineation, treatment response assessment, and prognostication.
Collapse
Affiliation(s)
- Aurélie Kas
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France.
| | - Laura Rozenblum
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France
| | - Nadya Pyatigorskaya
- Neuroradiology Department, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, UMR S 1127, CNRS UMR 722, Institut du Cerveau, Paris, France
| |
Collapse
|
6
|
Vestergaard MB, Laursen JC, Heinrich NS, Rossing P, Hansen TW, Larsson HBW. Patients with type 1 diabetes and albuminuria have a reduced brain glycolytic capability that is correlated with brain atrophy. Front Neurosci 2023; 17:1229509. [PMID: 37869511 PMCID: PMC10585154 DOI: 10.3389/fnins.2023.1229509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Patients with type 1 diabetes (T1D) demonstrate brain alterations, including white matter lesions and cerebral atrophy. In this case-control study, we investigated if a reason for this atrophy could be because of diabetes-related complications affecting cerebrovascular or cerebral glycolytic functions. Cerebral physiological dysfunction can lead to energy deficiencies and, consequently, neurodegeneration. Methods We examined 33 patients with T1D [18 females, mean age: 50.8 years (range: 26-72)] and 19 matched healthy controls [7 females, mean age: 45.0 years (range: 24-64)]. Eleven (33%) of the patients had albuminuria. Total brain volume, brain parenchymal fraction, gray matter volume and white matter volume were measured by anatomical MRI. Cerebral vascular and glycolytic functions were investigated by measuring global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2) and cerebral lactate concentration in response to the inhalation of hypoxic air (12-14% fractional oxygen) using phase-contrast MRI and magnetic resonance spectroscopy (MRS) techniques. The inspiration of hypoxic air challenges both cerebrovascular and cerebral glycolytic physiology, and an impaired response will reveal a physiologic dysfunction. Results Patients with T1D and albuminuria had lower total brain volume, brain parenchymal fraction, and gray matter volume than healthy controls and patients without albuminuria. The inhalation of hypoxic air increased CBF and lactate in all groups. Patients with albuminuria had a significantly (p = 0.032) lower lactate response compared to healthy controls. The CBF response was lower in patients with albuminuria compared to healthy controls, however not significantly (p = 0.24) different. CMRO2 was unaffected by the hypoxic challenge in all groups (p > 0.16). A low lactate response was associated with brain atrophy, characterized by reduced total brain volume (p = 0.003) and reduced gray matter volume (p = 0.013). Discussion We observed a reduced response of the lactate concentration as an indication of impaired glycolytic activity, which correlated with brain atrophy. Inadequacies in upregulating cerebral glycolytic activity, perhaps from reduced glucose transporters in the brain or hypoxia-inducible factor 1 pathway dysfunction, could be a complication in diabetes contributing to the development of neurodegeneration and declining brain health.
Collapse
Affiliation(s)
- Mark B. Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik B. W. Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Vestergaard MB, Iversen HK, Simonsen SA, Lindberg U, Cramer SP, Andersen UB, Larsson HB. Capillary transit time heterogeneity inhibits cerebral oxygen metabolism in patients with reduced cerebrovascular reserve capacity from steno-occlusive disease. J Cereb Blood Flow Metab 2023; 43:460-475. [PMID: 36369740 PMCID: PMC9941865 DOI: 10.1177/0271678x221139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The healthy cerebral perfusion demonstrates a homogenous distribution of capillary transit times. A disruption of this homogeneity may inhibit the extraction of oxygen. A high degree of capillary transit time heterogeneity (CTH) describes that some capillaries have very low blood flows, while others have excessively high blood flows and consequently short transit times. Very short transit times could hinder the oxygen extraction due to insufficient time for diffusion of oxygen into the tissue. CTH could be a consequence of cerebral vessel disease. We examined whether patients with cerebral steno-occlusive vessel disease demonstrate high CTH and if elevation of cerebral blood flow (CBF) by administration of acetazolamide (ACZ) increases the cerebral metabolic rate of oxygen (CMRO2), or if some patients demonstrate reduced CMRO2 related to detrimental CTH. Thirty-four patients and thirty-one healthy controls participated. Global CBF and CMRO2 were acquired using phase-contrast MRI. Regional brain maps of CTH were acquired using dynamic contrast-enhanced MRI. Patients with impaired cerebrovascular reserve capacity demonstrated elevated CTH and a significant reduction of CMRO2 after administration of ACZ, which could be related to high CTH. Impaired oxygen extraction from CTH could be a contributing part of the declining brain health observed in patients with cerebral vessel disease.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Helle K Iversen
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Amalie Simonsen
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ulrik B Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Henrik Bw Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. GeroScience 2022; 44:1905-1923. [PMID: 35648331 DOI: 10.1007/s11357-022-00596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.
Collapse
|
9
|
Ssali T, Narciso L, Hicks J, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Anazodo UC, Finger E, St Lawrence K. Concordance of regional hypoperfusion by pCASL MRI and 15O-water PET in frontotemporal dementia: Is pCASL an efficacious alternative? Neuroimage Clin 2022; 33:102950. [PMID: 35134705 PMCID: PMC8829802 DOI: 10.1016/j.nicl.2022.102950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
ASL is an alternative to 15O-water for identifying hypoperfusion in FTD patients. ROI-based perfusion by ASL and 15O-water were strongly correlated (R > 0.75). Hypoperfusion patterns identified by 15O-water and ASL were in good agreement. Careful selection of the reference region is required to avoid erroneous results.
Background Clinical diagnosis of frontotemporal dementia (FTD) remains a challenge due to the overlap of symptoms among FTD subtypes and with other psychiatric disorders. Perfusion imaging by arterial spin labeling (ASL) is a promising non-invasive alternative to established PET techniques; however, its sensitivity to imaging parameters can hinder its ability to detect perfusion abnormalities. Purpose This study evaluated the similarity of regional hypoperfusion patterns detected by ASL relative to the gold standard for imaging perfusion, PET with radiolabeled water (15O-water). Methods and materials Perfusion by single-delay pseudo continuous ASL (SD-pCASL), free-lunch Hadamard encoded pCASL (FL_TE-pCASL), and 15O-water data were acquired on a hybrid PET/MR scanner in 13 controls and 9 FTD patients. Cerebral blood flow (CBF) by 15O-water was quantified by a non-invasive approach (PMRFlow). Regional hypoperfusion was determined by comparing individual patients to the control group. This was performed using absolute (aCBF) and CBF normalized to whole-brain perfusion (rCBF). Agreement was assessed based on the fraction of overlapping voxels. Sensitivity and specificity of pCASL was estimated using hypoperfused regions of interest identified by 15O-water. Results Region of interest (ROI) based perfusion measured by 15O-water strongly correlated with SD-pCASL (R = 0.85 ± 0.1) and FL_TE-pCASL (R = 0.81 ± 0.14). Good agreement in terms of regional hypoperfusion patterns was found between 15O-water and SD-pCASL (sensitivity = 70%, specificity = 78%) and between 15O-water and FL_TE-pCASL (sensitivity = 71%, specificity = 73%). However, SD-pCASL showed greater overlap (43.4 ± 21.3%) with 15O-water than FL_TE-pCASL (29.9 ± 21.3%). Although aCBF and rCBF showed no significant differences regarding spatial overlap and metrics of agreement with 15O-water, rCBF showed considerable variability across subtypes, indicating that care must be taken when selecting a reference region. Conclusions This study demonstrates the potential of pCASL for assessing regional hypoperfusion related to FTD and supports its use as a cost-effective alternative to PET.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada.
| | - Lucas Narciso
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Justin Hicks
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Sarah Jesso
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Lauryn Richardson
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; University Bremen, Bremen, Germany
| | - Simon Konstandin
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Mediri GmbH, Heidelberg, Germany
| | | | - Frank Prato
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Udunna C Anazodo
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elizabeth Finger
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
10
|
Siripongsatian D, Kunawudhi A, Promteangtrong C, Kiatkittikul P, Jantarato A, Choolam A, Ponglikitmongkol K, Siripongboonsitti T, Kaeowirun T, Chotipanich C. Alterations in 18F-FDG PET/MRI and 15O-Water PET Brain Findings in Patients With Neurological Symptoms After COVID-19 Vaccination: A Pilot Study. Clin Nucl Med 2022; 47:e230-e239. [PMID: 35025789 PMCID: PMC8820745 DOI: 10.1097/rlu.0000000000004041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aimed to investigate functional abnormalities in the brain of patients with neurological adverse effects following COVID-19 (coronavirus disease 2019) vaccination using 18F-FDG PET/MRI and 15O-water PET. METHODS Eight patients (1 man and 7 women, aged 26-47 years [median age, 36.5 years]) who experienced neurological symptoms after the first COVID-19 vaccination underwent CT, MRI, 18F-FDG PET/MRI, and 15O-water PET of the brain. After 7 days, each patient underwent a follow-up 18F-FDG PET/MRI and 15O-water PET of the brain. Imaging data were analyzed using visual and semiquantitative analyses, which included a cluster subtraction workflow (P = 0.05). RESULTS There was no evidence of vascular abnormalities, acute infarction, or hemorrhage on the CT or MRI scans. On the 15O-water PET images, 1 patient had mildly significant decreases in perfusion in the bilateral thalamus and bilateral cerebellum, and another patient showed a diffuse increase in perfusion in the cerebral white matter. The visual and semiquantitative analyses showed hypometabolism in the bilateral parietal lobes in all 8 patients on both the first and follow-up 18F-FDG PET/MRI scans. Metabolic changes in the bilateral cuneus were also observed during the first visit; all patients exhibited neurological symptoms. Moreover, 6 patients showed hypometabolism, and 2 patients showed hypermetabolism. CONCLUSION All regions of metabolic abnormality were part of the fear network model that has been implicated in anxiety. Our study findings support the concepts of and provide evidence for the immunization stress-related response and the biopsychosocial model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tharathorn Kaeowirun
- Department of Radiology, Bhumibol Adulyadej Hospital, Royal Thai Air Force, Bangkok, Thailand
| | | |
Collapse
|
11
|
Narciso L, Ssali T, Liu L, Jesso S, Hicks JW, Anazodo U, Finger E, St Lawrence K. Noninvasive Quantification of Cerebral Blood Flow Using Hybrid PET/MR Imaging to Extract the [ 15 O]H 2 O Image-Derived Input Function Free of Partial Volume Errors. J Magn Reson Imaging 2022; 56:1243-1255. [PMID: 35226390 DOI: 10.1002/jmri.28134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Quantification of cerebral blood flow (CBF) with [15 O]H2 O-positron emission tomography (PET) requires arterial sampling to measure the input function. This invasive procedure can be avoided by extracting an image-derived input function (IDIF); however, IDIFs are sensitive to partial volume errors due to the limited spatial resolution of PET. PURPOSE To present an alternative hybrid PET/MR imaging of CBF (PMRFlowIDIF ) that uses phase-contrast (PC) MRI measurements of whole-brain (WB) CBF to calibrate an IDIF extracted from a WB [15 O]H2 O time-activity curve. STUDY TYPE Technical development and validation. ANIMAL MODEL Twelve juvenile Duroc pigs (83% female). POPULATION Thirteen healthy individuals (38% female). FIELD STRENGTH/SEQUENCES 3 T; gradient-echo PC-MRI. ASSESSMENT PMRFlowIDIF was validated against PET-only in a porcine model that included arterial sampling. CBF maps were generated by applying PMRFlowIDIF and two previous PMRFlow methods (PC-PET and double integration method [DIM]) to [15 O]H2 O-PET data acquired from healthy individuals. STATISTICAL TESTS PMRFlow and PET CBF measurements were compared with regression and correlation analyses. Paired t-tests were performed to evaluate differences. Potential biases were assessed using one-sample t-tests. Reliability was assessed by intraclass correlation coefficients. Statistical significance: α = 0.05. RESULTS In the animal study, strong agreement was observed between PMRFlowIDIF (average voxel-wise CBF, 58.0 ± 16.9 mL/100 g/min) and PET (63.0 ± 18.9 mL/100 g/min). In the human study, PMRFlowDIM (y = 1.11x - 5.16, R2 = 0.99 ± 0.01) and PMRFlowPC-PET (y = 0.87x + 3.82, R2 = 0.97 ± 0.02) performed similarly to PMRFlowIDIF, and CBF was within the expected range (eg, 49.7 ± 7.2 mL/100 g/min for gray matter). DATA CONCLUSION Accuracy of PMRFlowIDIF was confirmed in the animal study with the primary source of error attributed to differences in WB CBF measured by PC MRI and PET. In the human study, differences in CBF from PMRFlowIDIF , PMRFlowDIM , and PMRFlowPC-PET were due to the latter two not accounting for blood-borne activity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Lucas Narciso
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Linshan Liu
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Sarah Jesso
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Justin W Hicks
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Udunna Anazodo
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Elizabeth Finger
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
van der Hoek S, Stevens J. Current Use and Complementary Value of Combining in Vivo Imaging Modalities to Understand the Renoprotective Effects of Sodium-Glucose Cotransporter-2 Inhibitors at a Tissue Level. Front Pharmacol 2022; 13:837993. [PMID: 35264970 PMCID: PMC8899288 DOI: 10.3389/fphar.2022.837993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) were initially developed to treat diabetes and have been shown to improve renal and cardiovascular outcomes in patients with- but also without diabetes. The mechanisms underlying these beneficial effects are incompletely understood, as is the response variability between- and within patients. Imaging modalities allow in vivo quantitative assessment of physiological, pathophysiological, and pharmacological processes at kidney tissue level and are therefore increasingly being used in nephrology. They provide unique insights into the renoprotective effects of SGLT2i and the variability in response and may thus contribute to improved treatment of the individual patient. In this mini-review, we highlight current work and opportunities of renal imaging modalities to assess renal oxygenation and hypoxia, fibrosis as well as interaction between SGLT2i and their transporters. Although every modality allows quantitative assessment of particular parameters of interest, we conclude that especially the complementary value of combining imaging modalities in a single clinical trial aids in an integrated understanding of the pharmacology of SGLT2i and their response variability.
Collapse
|
13
|
Ssali T, Anazodo UC, Narciso L, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Finger E, St Lawrence K. Sensitivity of arterial Spin labeling for characterization of longitudinal perfusion changes in Frontotemporal dementia and related disorders. NEUROIMAGE-CLINICAL 2021; 35:102853. [PMID: 34697009 PMCID: PMC9421452 DOI: 10.1016/j.nicl.2021.102853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
This study demonstrates the value of ASL for longitudinal monitoring of perfusion in FTD patients. Good agreement was found in repeat measures of CBF in patients and controls. Transit times were not a significant source of error for the selected post labeling delay (2 s).
Background Advances in the understanding of the pathophysiology of frontotemporal dementia (FTD) and related disorders, along with the development of novel candidate disease modifying treatments, have stimulated the need for tools to assess the efficacy of new therapies. While perfusion imaging by arterial spin labeling (ASL) is an attractive approach for longitudinal imaging biomarkers of neurodegeneration, sources of variability between sessions including arterial transit times (ATT) and fluctuations in resting perfusion can reduce its sensitivity. Establishing the magnitude of perfusion changes that can be reliably detected is necessary to delineate longitudinal perfusion changes related to disease processes from the effects of these sources of error. Purpose To assess the feasibility of ASL for longitudinal monitoring of patients with FTD by quantifying between-session variability of perfusion on a voxel-by-voxel basis. Methods and materials ASL data were collected in 13 healthy controls and 8 patients with FTD or progressive supra-nuclear palsy. Variability in cerebral blood flow (CBF) by single delay pseudo-continuous ASL (SD-pCASL) acquired one month apart were quantified by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Additionally, CBF by SD-pCASL and ATT by low-resolution multiple inversion time ASL (LowRes-pCASL) were compared to Hadamard encoded sequences which are able to simultaneously measure CBF and ATT with improved time-efficiency. Results Agreement of grey-matter perfusion between sessions was found for both patients and controls (CV = 10.8% and 8.3% respectively) with good reliability for both groups (ICC > 0.6). Intensity normalization to remove day-to-day fluctuations in resting perfusion reduced the CV by 28%. Less than 5% of voxels had ATTs above the chosen post labelling delay (2 s), indicating that the ATT was not a significant source of error. Hadamard-encoded perfusion imaging yielded systematically higher CBF compared to SD-pCASL, but produced similar transit-time measurements. Power analysis revealed that SD-pCASL has the sensitivity to detect longitudinal changes as low as 10% with as few as 10 patient participants. Conclusion With the appropriate labeling parameters, SD-pCASL is a promising approach for assessing longitudinal changes in CBF associated with FTD.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada.
| | - Udunna C Anazodo
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Lucas Narciso
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Sarah Jesso
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Lauryn Richardson
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; University Bremen, Bremen, Germany
| | - Simon Konstandin
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Mediri GmbH, Heidelberg, Germany
| | | | - Frank Prato
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elizabeth Finger
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
14
|
Tournier N, Comtat C, Lebon V, Gennisson JL. Challenges and Perspectives of the Hybridization of PET with Functional MRI or Ultrasound for Neuroimaging. Neuroscience 2021; 474:80-93. [DOI: 10.1016/j.neuroscience.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
15
|
Vestergaard MB, Ghanizada H, Lindberg U, Arngrim N, Paulson OB, Gjedde A, Ashina M, Larsson HBW. Human Cerebral Perfusion, Oxygen Consumption, and Lactate Production in Response to Hypoxic Exposure. Cereb Cortex 2021; 32:1295-1306. [PMID: 34448827 PMCID: PMC8924433 DOI: 10.1093/cercor/bhab294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to moderate hypoxia in humans leads to cerebral lactate production, which occurs even when the cerebral metabolic rate of oxygen (CMRO2) is unaffected. We searched for the mechanism of this lactate production by testing the hypothesis of upregulation of cerebral glycolysis mediated by hypoxic sensing. Describing the pathways counteracting brain hypoxia could help us understand brain diseases associated with hypoxia. A total of 65 subjects participated in this study: 30 subjects were exposed to poikilocapnic hypoxia, 14 were exposed to isocapnic hypoxia, and 21 were exposed to carbon monoxide (CO). Using this setup, we examined whether lactate production reacts to an overall reduction in arterial oxygen concentration or solely to reduced arterial oxygen partial pressure. We measured cerebral blood flow (CBF), CMRO2, and lactate concentrations by magnetic resonance imaging and spectroscopy. CBF increased (P < 10-4), whereas the CMRO2 remained unaffected (P > 0.076) in all groups, as expected. Lactate increased in groups inhaling hypoxic air (poikilocapnic hypoxia: $0.0136\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P < 10-6; isocapnic hypoxia: $0.0142\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P = 0.003) but was unaffected by CO (P = 0.36). Lactate production was not associated with reduced CMRO2. These results point toward a mechanism of lactate production by upregulation of glycolysis mediated by sensing a reduced arterial oxygen pressure. The released lactate may act as a signaling molecule engaged in vasodilation.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Nanna Arngrim
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Albert Gjedde
- Faculty of Health and Medical Science, Department of Neuroscience, University of Copenhagen, Copenhagen 2100, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
16
|
Liu D, Jiang D, Tekes A, Kulikowicz E, Martin LJ, Lee JK, Liu P, Qin Q. Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods. J Magn Reson Imaging 2021; 54:1053-1065. [PMID: 33955613 DOI: 10.1002/jmri.27638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Disruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important. PURPOSE Phase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets. STUDY TYPE Prospective. ANIMAL MODEL Ten neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2). FIELD STRENGTH/SEQUENCE VSASL, TRUPC, and PC MRI acquired at 3.0 T. ASSESSMENT Regional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons. STATISTICAL TESTS Spearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV. RESULTS Global CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 μmol/100 g/minute and 77.2 ± 12.2 μmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10). DATA CONCLUSION Non-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Mokhber N, Shariatzadeh A, Avan A, Saber H, Babaei GS, Chaimowitz G, Azarpazhooh MR. Cerebral blood flow changes during aging process and in cognitive disorders: A review. Neuroradiol J 2021; 34:300-307. [PMID: 33749402 PMCID: PMC8447819 DOI: 10.1177/19714009211002778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to summarize the available evidence on cerebral blood flow (CBF) changes
in normal aging and common cognitive disorders. We searched PubMed for studies
on CBF changes in normal aging and cognitive disorders up to 1 January 2019. We
summarized the milestones in the history of CBF assessment and reviewed the
current evidence on the association between CBF and cognitive changes in normal
aging, vascular cognitive impairment (VCI) and Alzheimer’s disease (AD). There
is promising evidence regarding the utility of CBF studies in cognition
research. Age-related CBF changes could be related to a progressive neuronal
loss or diminished activity and synaptic density of neurons in the brain. While
a similar cause or outcome theory applies to VCI and AD, it is possible that CBF
reduction might precede cognitive decline. Despite the diversity of CBF research
findings, its measurement could help early detection of cognitive disorders and
also understanding their underlying etiology.
Collapse
Affiliation(s)
- Naghmeh Mokhber
- Department of Psychiatry, Western University, Canada.,Department of Psychiatry and Neuropsychiatry, Mashhad University of Medical Sciences, Iran
| | - Aidin Shariatzadeh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada
| | - Abolfazl Avan
- Department of Public Health, Mashhad University of Medical Sciences, Iran
| | - Hamidreza Saber
- Department of Neurology, Wayne State University School of Medicine, USA
| | | | - Gary Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M Reza Azarpazhooh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada.,Department of Clinical Neurological Sciences, Western University, Canada
| |
Collapse
|
18
|
Narciso L, Ssali T, Liu L, Biernaski H, Butler J, Morrison L, Hadway J, Corsaut J, Hicks JW, Langham MC, Wehrli FW, Iida H, St Lawrence K. A Noninvasive Method for Quantifying Cerebral Metabolic Rate of Oxygen by Hybrid PET/MRI: Validation in a Porcine Model. J Nucl Med 2021; 62:jnumed.120.260521. [PMID: 33741647 PMCID: PMC8612192 DOI: 10.2967/jnumed.120.260521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
The gold standard for imaging the cerebral metabolic rate of oxygen (CMRO2) is positron emission tomography (PET); however, it is an invasive and complex procedure that also requires correction for recirculating 15O-H2O and the blood-borne activity. We propose a noninvasive reference-based hybrid PET/magnetic resonance imaging (MRI) method that uses functional MRI techniques to calibrate 15O-O2-PET data. Here, PET/MR imaging of oxidative metabolism (PMROx) was validated in an animal model by comparison to PET-alone measurements. Additionally, we investigated if the MRI-perfusion technique arterial spin labelling (ASL) could be used to further simplify PMROx by replacing 15O-H2O-PET, and if the PMROx was sensitive to anesthetics-induced changes in metabolism. Methods: 15O-H2O and 15O-O2 PET data were acquired in a hybrid PET/MR scanner (3 T Siemens Biograph mMR), together with simultaneous functional MRI (OxFlow and ASL), from juvenile pigs (n = 9). Animals were anesthetized with 3% isoflurane and 6 mL/kg/h propofol for the validation experiments and arterial sampling was performed for PET-alone measurements. PMROx estimates were obtained using whole-brain (WB) CMRO2 from OxFlow and local cerebral blood flow (CBF) from either noninvasive 15O-H2O-PET or ASL (PMROxASL). Changes in metabolism were investigated by increasing the propofol infusion to 20 mL/kg/h. Results: Good agreement and correlation were observed between regional CMRO2 measurements from PMROx and PET-alone. No significant differences were found between OxFlow and PET-only measurements of WB oxygen extraction fraction (0.30 ± 0.09 and 0.31 ± 0.09) and CBF (54.1 ± 16.7 and 56.6 ± 21.0 mL/100 g/min), or between PMROx and PET-only CMRO2 estimates (1.89 ± 0.16 and 1.81 ± 0.10 mLO2/100 g/min). Moreover, PMROx and PMROxASL were sensitive to propofol-induced reduction in CMRO2 Conclusion: This study provides initial validation of a noninvasive PET/MRI technique that circumvents many of the complexities of PET CMRO2 imaging. PMROx does not require arterial sampling and has the potential to reduce PET imaging to 15O-O2 only; however, future validation involving human participants are required.
Collapse
Affiliation(s)
- Lucas Narciso
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - John Butler
- Lawson Health Research Institute, London, Ontario, Canada
| | - Laura Morrison
- Lawson Health Research Institute, London, Ontario, Canada
| | | | | | - Justin W. Hicks
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Michael C. Langham
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Felix W. Wehrli
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hidehiro Iida
- University of Turku and Turku PET Centre, Turku, Finland; and
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Narciso L, Ssali T, Iida H, St Lawrence K. A non-invasive reference-based method for imaging the cerebral metabolic rate of oxygen by PET/MR: theory and error analysis. Phys Med Biol 2021; 66:065009. [PMID: 33596555 DOI: 10.1088/1361-6560/abe737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) remains the gold standard for quantitative imaging of the cerebral metabolic rate of oxygen (CMRO2); however, it is an invasive and complex procedure that requires accounting for recirculating [15O]H2O (RW) and the cerebral blood volume (CBV). This study presents a non-invasive reference-based technique for imaging CMRO2 that was developed for PET/magnetic resonance imaging (MRI) with the goal of simplifying the PET procedure while maintaining its ability to quantify metabolism. The approach is to use whole-brain (WB) measurements of oxygen extraction fraction (OEF) and cerebral blood flow (CBF) to calibrate [15O]O2-PET data, thereby avoiding the need for invasive arterial sampling. Here we present the theoretical framework, along with error analyses, sensitivity to PET noise and inaccuracies in input parameters, and initial assessment on PET data acquired from healthy participants. Simulations showed that neglecting RW and CBV corrections caused errors in CMRO2 of less than ±10% for changes in regional OEF of ±25%. These predictions were supported by applying the reference-based approach to PET data, which resulted in remarkably similar CMRO2 images to those generated by analyzing the same data using a modeling approach that incorporated the arterial input functions and corrected for CBV contributions. Significant correlations were observed between regional CMRO2 values from the two techniques (slope = 1.00 ± 0.04, R 2 > 0.98) with no significant differences found for integration times of 3 and 5 min. In summary, results demonstrate the feasibility of producing quantitative CMRO2 images by PET/MRI without the need for invasive blood sampling.
Collapse
Affiliation(s)
- Lucas Narciso
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Hidehiro Iida
- University of Turku and Turku PET Centre, Turku, Finland.,National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
20
|
Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting 15O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab 2020; 40:2240-2253. [PMID: 31722599 PMCID: PMC7585922 DOI: 10.1177/0271678x19888123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To improve the quality of MRI-based cerebral blood flow (CBF) measurements, a deep convolutional neural network (dCNN) was trained to combine single- and multi-delay arterial spin labeling (ASL) and structural images to predict gold-standard 15O-water PET CBF images obtained on a simultaneous PET/MRI scanner. The dCNN was trained and tested on 64 scans in 16 healthy controls (HC) and 16 cerebrovascular disease patients (PT) with 4-fold cross-validation. Fidelity to the PET CBF images and the effects of bias due to training on different cohorts were examined. The dCNN significantly improved CBF image quality compared with ASL alone (mean ± standard deviation): structural similarity index (0.854 ± 0.036 vs. 0.743 ± 0.045 [single-delay] and 0.732 ± 0.041 [multi-delay], P < 0.0001); normalized root mean squared error (0.209 ± 0.039 vs. 0.326 ± 0.050 [single-delay] and 0.344 ± 0.055 [multi-delay], P < 0.0001). The dCNN also yielded mean CBF with reduced estimation error in both HC and PT (P < 0.001), and demonstrated better correlation with PET. The dCNN trained with the mixed HC and PT cohort performed the best. The results also suggested that models should be trained on cases representative of the target population.
Collapse
Affiliation(s)
- Jia Guo
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Enhao Gong
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Subtle Medical Inc., Menlo Park, CA, USA
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Aravantinou-Fatorou K, Fotakopoulos G. Efficacy of exercise rehabilitation program accompanied by experiential music for recovery of aphasia in single cerebrovascular accidents: a randomized controlled trial. Ir J Med Sci 2020; 190:771-778. [PMID: 32740716 DOI: 10.1007/s11845-020-02328-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The current study aims to evaluate the effects of daily traditional experiential music listening for clinical recovery of post-stroke aphasia. METHODS This was a prospective randomized trial with seventy-nine stroke survivors who suffered from post-stroke aphasia. All patients underwent a neuropsychological evaluation, at time = 0 during the admission at the rehabilitation structure (baseline), and 6 months post-stroke. All cases received standard treatment for stroke and post-stroke aphasia in terms of medical care and rehabilitation. Furthermore, patients were randomized to receive either standard care only or standard care with daily traditional experiential music listening. Computer tomography perfusion and neurological examination were assessed to all patients. Recovery was measured by the score at Aachener Aphasie Test. RESULTS The statistically significant differences between the control group (CG) and the rest of the patients were the clinical characteristics (hemiparesis) (p = 0.002), the cerebral blood flow in affected areas (p = 0.000), and the Mini-Mental Test (mMT) (p = 0.000). Only group and mMT were independent predictor factors for recovery, according to multivariate analysis odd ratio (ΟR) (95% confidence interval) 0.022 (0.009-0.435) and 0.658 (0.142-0.224) respectively. CONCLUSIONS The results of this study are promising and suggest that an enriched sound environment is beneficial for patients with post-stroke aphasia since the recovery rate is higher when standard care was combined with daily music listening.
Collapse
Affiliation(s)
| | - George Fotakopoulos
- Department of Neurosurgery, General Hospital of Pyrgos 'Andreas Papandreou', Sintriada, 27100, Pyrgos Ilias, Greece. .,, Pyrgos Ilias, Greece.
| |
Collapse
|
22
|
Cockburn N, Corsaut J, Kovacs MS, St Lawrence K, Hicks JW. Validation protocol for current good manufacturing practices production of [15O]water for hybrid PET/MR studies. Nucl Med Commun 2020; 41:1100-1105. [PMID: 32694283 DOI: 10.1097/mnm.0000000000001249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxygen-15 (O; t½ = 122.4 s) has been used for nuclear imaging experiments since the beginning of the field. With the advent of simultaneous hybrid PET/MR technology, [O]water has seen a resurgence and remains the gold standard method for quantitative blood flow studies. The short half-life presents a nontrivial challenge to applying current good manufacturing practices production methods to maintain patient safety. METHODS A two-vial production method was devised to ensure adequate mixing of [O]water vapour into buffered isotonic saline. For production validation, six batches of [O]water were prepared: sterility, quality control testing and four patient doses. The final dose also underwent quality tested. Routine quality control testing included the following: radiochemical identity and purity, radionuclidic identity and purity, appearance, pH, pyrogenicity, and filter integrity. Sterility was retrospectively confirmed. For validation, breakthrough Pt concentration was also measured. RESULTS Consistent yields of 10-12 GBq (270-325 mCi) were obtained 3 min after bombardment. Overall, 26 [O]water batches underwent quality control testing under this protocol and all met or exceeded release specifications for clinical use. CONCLUSION The multiple batch protocol proved to be a safe and effective means for producing [O]water. Furthermore, this protocol could be readily adapted by any facility attempting to produce [O]water for clinical studies. Compared with previous attempts at our site, the protocol outlined here was more consistent and reliable, improved production workflow and led to more available radioactivity for participant injection and QC testing.
Collapse
Affiliation(s)
| | | | - Michael S Kovacs
- Lawson Health Research Institute.,Department of Medical Biophysics.,Department of Medical Imaging, Western University, London, Ontario, Canada
| | | | - Justin W Hicks
- Lawson Health Research Institute.,Department of Medical Biophysics
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Hybrid PET- MRI is a technique that has the ability to improve diagnostic accuracy in many applications, whereas PET and MRI performed separately often fail to provide accurate responses to clinical questions. Here, we review recent studies and current developments in PET-MRI, focusing on clinical applications. RECENT FINDINGS The combination of PET and MRI imaging methods aims at increasing the potential of each individual modality. Combined methods of image reconstruction and correction of PET-MRI attenuation are being developed, and a number of applications are being introduced into clinical practice. To date, the value of PET-MRI has been demonstrated for the evaluation of brain tumours in epilepsy and neurodegenerative diseases. Continued advances in data analysis regularly improve the efficiency and the potential application of multimodal biomarkers. SUMMARY PET-MRI provides simultaneous of anatomical, functional, biochemical and metabolic information for the personalized characterization and monitoring of neurological diseases. In this review, we show the advantage of the complementarity of different biomarkers obtained using PET-MRI data. We also present the recent advances made in this hybrid imaging modality and its advantages in clinical practice compared with MRI and PET separately.
Collapse
|
24
|
Parent EE, Sethi I, Nye J, Holder C, Olson JJ, Switchenko J, Tade F, Akin-Akintayo OO, Abiodun-Ojo OA, Akintayo A, Schuster DM. 82Rubidium chloride PET discrimination of recurrent intracranial malignancy from radiation necrosis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2019; 66:74-81. [PMID: 31820882 DOI: 10.23736/s1824-4785.19.03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Accurate identification and discrimination of post treatment changes from recurrent disease remains a challenge for patients with intracranial malignancies despite advances in molecular and magnetic resonance imaging. We have explored the ability of readily available Rubidium-82 chloride (82RbCl) PET to identify and distinguish progressive intracranial disease from radiation necrosis in patients previously treated with radiation therapy. METHODS Six patients with a total of 9 lesions of either primary (n=3) or metastatic (n=6) intracranial malignancies previously treated with stereotactic radiation surgery (SRS) and persistent contrast enhancement on MRI underwent brain 82RbCl PET imaging. Two patients with arteriovenous malformations previously treated with SRS, also had brain 82RbCl PET imaging for a total of 11 lesions studied. Histological confirmation via stereotactic biopsy/excisional resection was obtained for 9 lesions with the remaining 2 classified as either recurrent tumor or radiation necrosis based on subsequent MRI examinations. 82RbCl PET time activity curve analysis was performed which comprised lesion SUVmax, contralateral normal brain SUVmax, and tumor to background ratios (TBmax). RESULTS 82RbCl demonstrates uptake greater than normal brain parenchyma in all lesions studied. Time activity curves demonstrated progressive uptake of 82RbCl in all lesions without evidence of washout. While recurrent disease demonstrated a greater mean SUVmax compared to radiation necrosis, no statistically significant difference between lesion SUVmax nor TBmax was found (p>0.05). CONCLUSIONS 82RbCl PET produces high-contrast uptake of both recurrent disease and radiation necrosis compared to normal brain. However, no statistically significant difference was found between recurrent tumor and radiation necrosis.
Collapse
Affiliation(s)
| | - Ila Sethi
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA -
| | - Jonathon Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chad Holder
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Switchenko
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute of Emory, University, Atlanta, GA, USA
| | - Funmilayo Tade
- Department of Radiology, Loyola University, Chicago, IL, USA
| | - Oladunni O Akin-Akintayo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Olayinka A Abiodun-Ojo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Akinyemi Akintayo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Liu L, Alizadeh K, Donnelly SC, Dassanayake P, Hou TT, McGirr R, Thompson RT, Prato FS, Gelman N, Hoffman L, Goldhawk DE. MagA expression attenuates iron export activity in undifferentiated multipotent P19 cells. PLoS One 2019; 14:e0217842. [PMID: 31170273 PMCID: PMC6553743 DOI: 10.1371/journal.pone.0217842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a non-invasive imaging modality used in longitudinal cell tracking. Previous studies suggest that MagA, a putative iron transport protein from magnetotactic bacteria, is a useful gene-based magnetic resonance contrast agent. Hemagglutinin-tagged MagA was stably expressed in undifferentiated embryonic mouse teratocarcinoma, multipotent P19 cells to provide a suitable model for tracking these cells during differentiation. Western blot and immunocytochemistry confirmed the expression and membrane localization of MagA in P19 cells. Surprisingly, elemental iron analysis using inductively-coupled plasma mass spectrometry revealed significant iron uptake in both parental and MagA-expressing P19 cells, cultured in the presence of iron-supplemented medium. Withdrawal of this extracellular iron supplement revealed unexpected iron export activity in P19 cells, which MagA expression attenuated. The influence of iron supplementation on parental and MagA-expressing cells was not reflected by longitudinal relaxation rates. Measurement of transverse relaxation rates (R2* and R2) reflected changes in total cellular iron content but did not clearly distinguish MagA-expressing cells from the parental cell type, despite significant differences in the uptake and retention of total cellular iron. Unlike other cell types, the reversible component R2′ (R2* ‒ R2) provided only a moderately strong correlation to amount of cellular iron, normalized to amount of protein. This is the first report to characterize MagA expression in a previously unrecognized iron exporting cell type. The interplay between contrast gene expression and systemic iron metabolism substantiates the potential for diverting cellular iron toward the formation of a novel iron compartment, however rudimentary when using a single magnetotactic bacterial gene expression system like magA. Since relatively few mammalian cells export iron, the P19 cell line provides a tractable model of ferroportin activity, suitable for magnetic resonance analysis of key iron-handling activities and their influence on gene-based MRI contrast.
Collapse
Affiliation(s)
- Linshan Liu
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Kobra Alizadeh
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Sarah C. Donnelly
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Praveen Dassanayake
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Tian Tian Hou
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Rebecca McGirr
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - R. Terry Thompson
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Frank S. Prato
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
| | - Lisa Hoffman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Donna E. Goldhawk
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Ishii Y, Thamm T, Guo J, Khalighi MM, Wardak M, Holley D, Gandhi H, Park JH, Shen B, Steinberg GK, Chin FT, Zaharchuk G, Fan AP. Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. J Magn Reson Imaging 2019; 51:183-194. [PMID: 31044459 DOI: 10.1002/jmri.26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND H2 15 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H2 15 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE Observational. SUBJECTS Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES 3T/2D cardiac-gated phase-contrast MRI and H2 15 O-PET. ASSESSMENT PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H2 15 O-PET in future studies. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thoralf Thamm
- Department of Radiology, Stanford University, Stanford, California, USA.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jia Guo
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Mirwais Wardak
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Harsh Gandhi
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Audrey Peiwen Fan
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
Prato FS, Pavlosky WF, Foster SC, Thiessen JD, Beaujot RP. Screening for Dementia Caused by Modifiable Lifestyle Choices Using Hybrid PET/MRI. J Alzheimers Dis Rep 2019; 3:31-45. [PMID: 30842996 PMCID: PMC6400112 DOI: 10.3233/adr-180098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Significant advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) brain imaging in the early detection of dementia indicate that hybrid PET/MRI would be an effective tool to screen for dementia in the population living with lifestyle risk factors. Here we investigate the associated costs and benefits along with the needed imaging infrastructure. A demographic analysis determined the prevalence of dementia and its incidence. The expected value of the screening program was calculated assuming a sensitivity and specificity of 0.9, a prevalence of 0.1, a QALY factor of 0.348, a willingness to pay $114,000 CAD and the cost per PET/MRI scan of $2,000 CAD. It was assumed that each head PET/MRI could screen 3,000 individuals per year. The prevalence of dementia is increasing by almost two-fold every 20 years due to the increased population at ages where dementia is more prevalent. It has been shown that a five-year delay in the incidence of dementia would decrease the prevalence by some 45%. In Canada, a five-year delay corresponds to a health care savings of $27,000 CAD per subject per year. The expected value for screening was estimated at $23,745 CAD. The number of subjects to be screened per year in Canada, USA, and China between 60 and 79 was 11,405,000. The corresponding number of head-only hybrid PET/MRI systems needed is 3,800. A brain PET/MRI screening program is financially justifiable with respect to health care costs and justifies the continuing development of MRI compatible brain PET technology.
Collapse
Affiliation(s)
- Frank S. Prato
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | - William F. Pavlosky
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Jonathan D. Thiessen
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | |
Collapse
|
29
|
Aiello M, Cavaliere C, Marchitelli R, d'Albore A, De Vita E, Salvatore M. Hybrid PET/MRI Methodology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:97-128. [PMID: 30314608 DOI: 10.1016/bs.irn.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The hybrid PET/MR scanner represents the first implementation of the effective integration of two modalities allowing truly synchronous/simultaneous acquisition of their imaging signals. This integration, resulting from the innovation and development of specific hardware components has paved the way for new approaches in the study of neurodegenerative diseases. This chapter will describe the hardware development that has led to the availability of different clinical solutions for PET/MR imaging as well as the still-open technological challenges and opportunities related to the processing and exploitation of the simultaneous acquisition in neurological studies.
Collapse
Affiliation(s)
| | | | | | | | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | | |
Collapse
|