1
|
Traub-Weidinger T, Arbizu J, Barthel H, Boellaard R, Borgwardt L, Brendel M, Cecchin D, Chassoux F, Fraioli F, Garibotto V, Guedj E, Hammers A, Law I, Morbelli S, Tolboom N, Van Weehaeghe D, Verger A, Van Paesschen W, von Oertzen TJ, Zucchetta P, Semah F. EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:1891-1908. [PMID: 38393374 PMCID: PMC11139752 DOI: 10.1007/s00259-024-06656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100, RigshospitaletCopenhagen, Denmark
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilian-University of Munich, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Francine Chassoux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals, Leuven, Belgium
| | - Tim J von Oertzen
- Depts of Neurology 1&2, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, CHU Lille, U1172-LilNCog-Lille, F-59000, Lille, France.
| |
Collapse
|
2
|
Bergeret S, Birzu C, Meneret P, Giron A, Demeret S, Marois C, Cousyn L, Rozenblum L, Laurenge A, Alentorn A, Navarro V, Psimaras D, Kas A. Brain Metabolic Alterations in Seropositive Autoimmune Encephalitis: An 18F-FDG PET Study. Biomedicines 2023; 11:biomedicines11020506. [PMID: 36831042 PMCID: PMC9953044 DOI: 10.3390/biomedicines11020506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Autoimmune encephalitis (AE) diagnosis and follow-up remain challenging. Brain 18F-fluoro-deoxy-glucose positron emission tomography (FDG PET) has shown promising results in AE. Our aim was to investigate FDG PET alterations in AE, according to antibody subtype. METHODS We retrospectively included patients with available FDG PET and seropositive AE diagnosed in our center between 2015 and 2020. Brain PET Z-score maps (relative to age matched controls) were analyzed, considering metabolic changes significant if |Z-score| ≥ 2. RESULTS Forty-six patients were included (49.4 yrs [18; 81]): 13 with GAD autoantibodies, 11 with anti-LGI1, 9 with NMDAR, 5 with CASPR2, and 8 with other antibodies. Brain PET was abnormal in 98% of patients versus 53% for MRI. The most frequent abnormalities were medial temporal lobe (MTL) and/or striatum hypermetabolism (52% and 43% respectively), cortical hypometabolism (78%), and cerebellum abnormalities (70%). LGI1 AE tended to have more frequent MTL hypermetabolism. NMDAR AE was prone to widespread cortical hypometabolism. Fewer abnormalities were observed in GAD AE. Striatum hypermetabolism was more frequent in patients treated for less than 1 month (p = 0.014), suggesting a relation to disease activity. CONCLUSION FDG PET could serve as an imaging biomarker for early diagnosis and follow-up in AE.
Collapse
Affiliation(s)
- Sébastien Bergeret
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
| | - Cristina Birzu
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Pierre Meneret
- Nuclear Medicine Department, Eugène Marquis Centre, INSERM, LTSI-UMR 1099, 35000 Rennes, France
| | - Alain Giron
- Laboratoire d’Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - Sophie Demeret
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Neurology Department, Neurological Intensive Care Unit, 75013 Paris, France
| | - Clemence Marois
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Neurology Department, Neurological Intensive Care Unit, 75013 Paris, France
| | - Louis Cousyn
- Sorbonne University, AP-HP, Pitié-Salpêtrière-Charles Foix Hospital Group, Epilepsy Unit, Paris Brain Institute, ICM, Reference Center for Rare Epilepsies, 75013 Paris, France
| | - Laura Rozenblum
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
| | - Alice Laurenge
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Agusti Alentorn
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Vincent Navarro
- Sorbonne University, AP-HP, Pitié-Salpêtrière-Charles Foix Hospital Group, Epilepsy Unit, Paris Brain Institute, ICM, Reference Center for Rare Epilepsies, 75013 Paris, France
| | - Dimitri Psimaras
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Aurélie Kas
- Sorbonne University, Laboratoire d’Imagerie Biomédicale, LIB, CNRS, INSERM, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
4
|
Sukprakun C, Tepmongkol S. Nuclear imaging for localization and surgical outcome prediction in epilepsy: A review of latest discoveries and future perspectives. Front Neurol 2022; 13:1083775. [PMID: 36588897 PMCID: PMC9800996 DOI: 10.3389/fneur.2022.1083775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Epilepsy is one of the most common neurological disorders. Approximately, one-third of patients with epilepsy have seizures refractory to antiepileptic drugs and further require surgical removal of the epileptogenic region. In the last decade, there have been many recent developments in radiopharmaceuticals, novel image analysis techniques, and new software for an epileptogenic zone (EZ) localization. Objectives Recently, we provided the latest discoveries, current challenges, and future perspectives in the field of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in epilepsy. Methods We searched for relevant articles published in MEDLINE and CENTRAL from July 2012 to July 2022. A systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis was conducted using the keywords "Epilepsy" and "PET or SPECT." We included both prospective and retrospective studies. Studies with preclinical subjects or not focusing on EZ localization or surgical outcome prediction using recently developed PET radiopharmaceuticals, novel image analysis techniques, and new software were excluded from the review. The remaining 162 articles were reviewed. Results We first present recent findings and developments in PET radiopharmaceuticals. Second, we present novel image analysis techniques and new software in the last decade for EZ localization. Finally, we summarize the overall findings and discuss future perspectives in the field of PET and SPECT in epilepsy. Conclusion Combining new radiopharmaceutical development, new indications, new techniques, and software improves EZ localization and provides a better understanding of epilepsy. These have proven not to only predict prognosis but also to improve the outcome of epilepsy surgery.
Collapse
Affiliation(s)
- Chanan Sukprakun
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Supatporn Tepmongkol ✉
| |
Collapse
|
5
|
Zhu Y, Ruan G, Zou S, Liu L, Zhu X. Age-matched control or age-specific template, which is essential for voxel-wise analysis of cerebral metabolism abnormality in pediatric patients with epilepsy? Hum Brain Mapp 2022; 44:472-483. [PMID: 36069128 PMCID: PMC9842903 DOI: 10.1002/hbm.26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to explore the influences of age-matched control and/or age-specific template on voxel-wise analysis of brain 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG PET) data in pediatric epilepsy patients. We, retrospectively, included 538 pediatric (196 females; age range of 12 months to 18 years) and 35 adult subjects (18 females; age range of 20-50 years) without any cerebral pathology as pediatric and adult control group, respectively, as well as 109 pediatric patients with drug-resistant epilepsy (38 females; age range of 13 months to 18 years) as epilepsy group. Statistical parametric mapping (SPM) analysis for 18 F-FDG PET data of each epilepsy patients was performed in four types of procedures, by using age-matched controls with age-specific template, age-matched controls with adult template, adult controls with age-specific template or adult controls with adult template. The numbers of brain regions affected by artifacts among these four types of SPM analysis procedures were further compared. Any template being adopted, the artifacts were significantly less in SPM analysis procedures using age-matched controls than those using adult controls in each age range (p < .001 in each comparison), except in the age range of 15-18 (p > .05 in each comparison). No significant difference was found in artifacts, when compared procedures using the identical control group with different templates (p = 1.000 in each comparison). In conclusion, the age stratification for age-matched control should be divided as many layers as possible for the SPM analysis of brain 18 F-FDG PET images, especially in pediatric patients ≤14-year-old, while age-specific template is not mandatory.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ge Ruan
- Department of RadiologyHospital, Hubei UniversityWuhanChina
| | - Sijuan Zou
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Luoxia Liu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Combined [ 18F]FDG-PET with MRI structural patterns in predicting post-surgical seizure outcomes in temporal lobe epilepsy patients. Eur Radiol 2022; 32:8423-8431. [PMID: 35713664 DOI: 10.1007/s00330-022-08912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To integrate the glucose metabolism measured using [18F]FDG PET/CT and anatomical features measured using MRI to forecast the post-surgical seizure outcomes of intractable temporal lobe epilepsy. METHODS This retrospective study enrolled 63 patients with drug-resistant temporal lobe epilepsy. Z-transform of the patients' PET images based on comparison with a database of healthy controls, cortical thickness, and quantitative anisotropy (QA) of the diffusion spectrum imaging concordant/non-concordant with cortical resection was adopted to quantify their predictive values for the post-surgical seizure outcomes. RESULTS The PET hypometabolism region was concordant with the surgical field in 47 of the 63 patients. Forty-two patients were seizure-free post-surgery. The sensitivity and specificity of PET in predicting seizure freedom were 89.4% and 68.8%, respectively. Complete resection of foci with overlapped PET, cortical thickness, and QA abnormalities resulted in Engel I in 27 patients, which was a good predictor of seizure freedom with an odds ratio (OR) of 19.57 (95% CI 2.38-161.25, p = 0.006). Hypometabolism involved in multiple lobes (OR = 7.18, 95% CI 1.02-50.75, p = 0.048) and foci of hypometabolism with QA/cortical thickness abnormalities outside surgical field (OR = 14.72, 95% CI 2.13-101.56, p = 0.006) were two major predictors of Engel III/IV outcomes. ORs of QA to predict Engel I and seizure recurrence were 14.64 (95% CI 2.90-73.80, p = 0.001) and 12.01 (95% CI 2.91-49.65, p = 0.001), respectively. CONCLUSION Combined PET and structural pattern is helpful to predict the post-surgical seizure outcomes and worse outcomes of Engel III/IV. This might decrease unnecessary surgical injuries to patients who are potentially not amenable to surgery. KEY POINTS • A combined metabolic and structural pattern is helpful to predict the post-surgical seizure outcomes. • Favorable post-surgical seizure outcome was most likely reached in patients whose hypometabolism overlapped with the structural changes. • Hypometabolism in multiple lobes and QA or cortical thickness abnormalities outside the surgical field were predictors of worse seizure outcomes of Engel III/IV.
Collapse
|
7
|
Spatial normalization and quantification approaches of PET imaging for neurological disorders. Eur J Nucl Med Mol Imaging 2022; 49:3809-3829. [PMID: 35624219 DOI: 10.1007/s00259-022-05809-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Quantification approaches of positron emission tomography (PET) imaging provide user-independent evaluation of pathophysiological processes in living brains, which have been strongly recommended in clinical diagnosis of neurological disorders. Most PET quantification approaches depend on spatial normalization of PET images to brain template; however, the spatial normalization and quantification approaches have not been comprehensively reviewed. In this review, we introduced and compared PET template-based and magnetic resonance imaging (MRI)-aided spatial normalization approaches. Tracer-specific and age-specific PET brain templates were surveyed between 1999 and 2021 for 18F-FDG, 11C-PIB, 18F-Florbetapir, 18F-THK5317, and etc., as well as adaptive PET template methods. Spatial normalization-based PET quantification approaches were reviewed, including region-of-interest (ROI)-based and voxel-wise quantitative methods. Spatial normalization-based ROI segmentation approaches were introduced, including manual delineation on template, atlas-based segmentation, and multi-atlas approach. Voxel-wise quantification approaches were reviewed, including voxel-wise statistics and principal component analysis. Certain concerns and representative examples of clinical applications were provided for both ROI-based and voxel-wise quantification approaches. At last, a recipe for PET spatial normalization and quantification approaches was concluded to improve diagnosis accuracy of neurological disorders in clinical practice.
Collapse
|
8
|
Wang J, Yang H, Cui B, Shan B, Lu J. Effects of MRI protocols on brain FDG uptake in simultaneous PET/MR imaging. Eur J Nucl Med Mol Imaging 2022; 49:2812-2820. [DOI: 10.1007/s00259-022-05703-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
|
9
|
Zhang T, Li Y, Zhao S, Xu Y, Zhang X, Wu S, Dou X, Yu C, Feng J, Ding Y, Zhu J, Chen Z, Zhang H, Tian M. High-resolution pediatric age-specific 18F-FDG PET template: a pilot study in epileptogenic focus localization. Eur J Nucl Med Mol Imaging 2021; 49:1560-1573. [PMID: 34746970 PMCID: PMC8940757 DOI: 10.1007/s00259-021-05611-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
Background PET imaging has been widely used in diagnosis of neurological disorders; however, its application to pediatric population is limited due to lacking pediatric age–specific PET template. This study aims to develop a pediatric age–specific PET template (PAPT) and conduct a pilot study of epileptogenic focus localization in pediatric epilepsy. Methods We recruited 130 pediatric patients with epilepsy and 102 age-matched controls who underwent 18F-FDG PET examination. High-resolution PAPT was developed by an iterative nonlinear registration-averaging optimization approach for two age ranges: 6–10 years (n = 17) and 11–18 years (n = 50), respectively. Spatial normalization to the PAPT was evaluated by registration similarities of 35 validation controls, followed by estimation of potential registration biases. In a pilot study, epileptogenic focus was localized by PAPT-based voxel-wise statistical analysis, compared with multi-disciplinary team (MDT) diagnosis, and validated by follow-up of patients who underwent epilepsy surgery. Furthermore, epileptogenic focus localization results were compared among three templates (PAPT, conventional adult template, and a previously reported pediatric linear template). Results Spatial normalization to the PAPT significantly improved registration similarities (P < 0.001), and nearly eliminated regions of potential biases (< 2% of whole brain volume). The PAPT-based epileptogenic focus localization achieved a substantial agreement with MDT diagnosis (Kappa = 0.757), significantly outperforming localization based on the adult template (Kappa = 0.496) and linear template (Kappa = 0.569) (P < 0.05). The PAPT-based localization achieved the highest detection rate (89.2%) and accuracy (80.0%). In postsurgical seizure-free patients (n = 40), the PAPT-based localization also achieved a substantial agreement with resection areas (Kappa = 0.743), and the highest detection rate (95%) and accuracy (80.0%). Conclusion The PAPT can significantly improve spatial normalization and epileptogenic focus localization in pediatric epilepsy. Future pediatric neuroimaging studies can also benefit from the unbiased spatial normalization by PAPT. Trial registration. NCT04725162: https://clinicaltrials.gov/ct2/show/NCT04725162 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05611-w.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yuting Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shuilin Zhao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yuanfan Xu
- Hangzhou Universal Medical Imaging Diagnostic Center, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Congcong Yu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Ding
- Department of Neurology, Epilepsy Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Starnes K, Depositario-Cabacar D, Wong-Kisiel L. Presurgical Evaluation Strategies for Intractable Epilepsy of Childhood. Semin Pediatr Neurol 2021; 39:100915. [PMID: 34620457 DOI: 10.1016/j.spen.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
For children who continue to experience seizures despite treatment with antiseizure medications, epilepsy surgery can be considered. The goals of the presurgical evaluation are to determine the best surgical approach to render a good outcome. In patients with drug resistant focal epilepsy, the epileptogenic zone defines the minimal brain volume which must be resected for surgical success and to delineate the relationship of this region with functional cortex. A number of noninvasive tools for these tasks have emerged over the past decade, and existing technologies have been revised and improved. In this review, we examine the recent published evidence for these techniques, specifically as applied to the pediatric population. Discussed herein are the diagnostic value of methods such as video electroencephalography, magnetic resonance imaging, and supportive neuroimaging techniques including single photon emission tomography, photon emission tomography, and magnetoencephalography. Functional testing including functional magnetic resonance imaging, electrical stimulation mapping, and transcranial magnetic stimulation are considered in the context of pediatric epilepsy. The application of emerging techniques to preoperative testing such as source localization, image post-processing, and artificial intelligence is covered. We summarize the relative value of presurgical testing based on patient characteristics, including lesional or nonlesional MRI, temporal or extratemporal epilepsy, and other factors relevant in pediatric epilepsy such as pathological substrate and age.
Collapse
Affiliation(s)
| | | | - Lily Wong-Kisiel
- Department of Neurology and Pediatrics, Mayo Clinic, Rochester, MN.
| |
Collapse
|
11
|
Tian M, Watanabe Y, Kang KW, Murakami K, Chiti A, Carrio I, Civelek AC, Feng J, Zhu Y, Zhou R, Wu S, Zhu J, Ding Y, Zhang K, Zhang H. International consensus on the use of [ 18F]-FDG PET/CT in pediatric patients affected by epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:3827-3834. [PMID: 34453559 DOI: 10.1007/s00259-021-05524-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Positron emission tomography (PET) with 18F-fluorodeoxyglucose ([18F]-FDG) has been increasingly applied in precise localization of epileptogenic focus in epilepsy patients, including pediatric patients. The aim of this international consensus is to provide the guideline and specific considerations for [18F]-FDG PET in pediatric patients affected by epilepsy. METHODS An international, multidisciplinary task group is formed, and the guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients has been discussed and approved, which include but not limited to the clinical indications, patient preparation, radiopharmaceuticals and administered activities, image acquisition, image processing, image interpretation, documentation and reporting, etc. CONCLUSION: This is the first international consensus and practice guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients. It will be an international standard for this purpose in clinical practice.
Collapse
Affiliation(s)
- Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Koji Murakami
- Department of Radiology, Juntendo University Hospital, Tokyo, 113-8431, Japan
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Ignasi Carrio
- Department of Nuclear Medicine, Hospital Sant Pau, Autonomous University of Barcelona, 08025, Barcelona, Spain
| | - A Cahid Civelek
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Ding
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310007, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China.
| | | |
Collapse
|
12
|
Brain metabolic characteristics distinguishing typical and atypical benign epilepsy with centro-temporal spikes. Eur Radiol 2021; 31:9335-9345. [PMID: 34050803 DOI: 10.1007/s00330-021-08051-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Atypical benign epilepsy with centro-temporal spikes (BECTS) have less favorable outcomes than typical BECTS, and thus should be accurately identified for adequate treatment. We aimed to investigate the glucose metabolic differences between typical and atypical BECTS using 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) imaging, and explore whether these differences can help distinguish. METHODS Forty-six patients with typical BECTS, 31 patients with atypical BECTS and 23 controls who underwent [18F]FDG PET examination were retrospectively involved. Absolute asymmetry index (|AI|) was applied to evaluate the severity of metabolic abnormality. Glucose metabolic differences were investigated among typical BECTS, atypical BECTS, and controls by using statistical parametric mapping (SPM). Logistic regression analyses were performed based on clinical, PET, and hybrid features. RESULTS The |AI| was found significantly higher in atypical BECTS than in typical BECTS (p = 0.040). Atypical BECTS showed more hypo-metabolism regions than typical BECTS, mainly located in the fronto-temporo-parietal cortex. The PET model had significantly higher area under the curve (AUC) than the clinical model (0.91 vs. 0.70, p = 0.006). The hybrid model had the highest sensitivity (0.90), specificity (0.85), and accuracy (0.87) of all three models. CONCLUSIONS Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, depending on which the two groups can be well distinguished. The combination of metabolic characteristics and clinical variables has the potential to be used clinically to distinguish between typical and atypical BECTS. KEY POINTS • Distinguishing between typical and atypical BECTS is very important for the formulation of treatment regimens in clinical practice. • Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, mainly located in the fronto-temporo-parietal cortex. • The logistic regression model based on PET outperformed that based on clinical characteristics in classification of typical and atypical BECTS, and the hybrid model achieved the best classification performance.
Collapse
|
13
|
Zhang Q, Liao Y, Wang X, Zhang T, Feng J, Deng J, Shi K, Chen L, Feng L, Ma M, Xue L, Hou H, Dou X, Yu C, Ren L, Ding Y, Chen Y, Wu S, Chen Z, Zhang H, Zhuo C, Tian M. A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:2476-2485. [PMID: 33420912 PMCID: PMC8241642 DOI: 10.1007/s00259-020-05108-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Epilepsy is one of the most disabling neurological disorders, which affects all age groups and often results in severe consequences. Since misdiagnoses are common, many pediatric patients fail to receive the correct treatment. Recently, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging has been used for the evaluation of pediatric epilepsy. However, the epileptic focus is very difficult to be identified by visual assessment since it may present either hypo- or hyper-metabolic abnormality with unclear boundary. This study aimed to develop a novel symmetricity-driven deep learning framework of PET imaging for the identification of epileptic foci in pediatric patients with temporal lobe epilepsy (TLE). METHODS We retrospectively included 201 pediatric patients with TLE and 24 age-matched controls who underwent 18F-FDG PET-CT studies. 18F-FDG PET images were quantitatively investigated using 386 symmetricity features, and a pair-of-cube (PoC)-based Siamese convolutional neural network (CNN) was proposed for precise localization of epileptic focus, and then metabolic abnormality level of the predicted focus was calculated automatically by asymmetric index (AI). Performances of the proposed framework were compared with visual assessment, statistical parametric mapping (SPM) software, and Jensen-Shannon divergence-based logistic regression (JS-LR) analysis. RESULTS The proposed deep learning framework could detect the epileptic foci accurately with the dice coefficient of 0.51, which was significantly higher than that of SPM (0.24, P < 0.01) and significantly (or marginally) higher than that of visual assessment (0.31-0.44, P = 0.005-0.27). The area under the curve (AUC) of the PoC classification was higher than that of the JS-LR (0.93 vs. 0.72). The metabolic level detection accuracy of the proposed method was significantly higher than that of visual assessment blinded or unblinded to clinical information (90% vs. 56% or 68%, P < 0.01). CONCLUSION The proposed deep learning framework for 18F-FDG PET imaging could identify epileptic foci accurately and efficiently, which might be applied as a computer-assisted approach for the future diagnosis of epilepsy patients. TRIAL REGISTRATION NCT04169581. Registered November 13, 2019 Public site: https://clinicaltrials.gov/ct2/show/NCT04169581.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Liao
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawan Wang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Teng Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianing Deng
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kexin Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Chen
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liu Feng
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mindi Ma
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Xue
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haifeng Hou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Ren
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yao Ding
- Department of Neurology, Epilepsy Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Chen
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Decreased Glucose Utilization Contributes to Memory Impairment in Patients with Glufosinate Ammonium Intoxication. J Clin Med 2020; 9:jcm9041213. [PMID: 32340163 PMCID: PMC7231126 DOI: 10.3390/jcm9041213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023] Open
Abstract
The symptoms of glufosinate ammonium (GLA) intoxication include gastrointestinal and neurologic symptoms, respiratory failure, and cardiovascular instability. Among these, neurologic symptoms including loss of consciousness, memory impairment, and seizure are characteristic of GLA poisoning. However, the mechanism of brain injury by GLA poisoning is still poorly understood. We investigated nine patients who had performed an F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scan because of memory impairment caused by GLA ingestion. FDG-PET images of patients with GLA intoxication were compared with 24 age- and sex-matched healthy controls to evaluate whether the patients had abnormal patterns of glucose metabolism in the brain. Decreased glucose metabolism was observed in the inferior frontal and temporal lobes of these patients with GLA intoxication when compared with 24 age- and sex-matched healthy controls. Three patients performed follow-up FDG-PET scans. However, it was shown that the results of the follow-up FDG-PET scans were determined to be inconclusive. Our study showed that memory impairment induced by GLA intoxication was associated with glucose hypometabolism in the inferior frontal and temporal lobes in the brain.
Collapse
|
15
|
Kappen P, Eltze C, Tisdall M, Cross JH, Thornton R, Moeller F. Stereo-EEG exploration in the insula/operculum in paediatric patients with refractory epilepsy. Seizure 2020; 78:63-70. [PMID: 32203882 DOI: 10.1016/j.seizure.2020.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Failure to recognise involvement of the insula / opercula (I/O) region is associated with poor outcome in epilepsy surgery. Recognition is challenging due to high connectivity with adjacent structures resulting in variable and misleading semiology, often subjective and therefore likely to be underreported by children. In this study we explored prevalence and characteristics of I/O involvement in paediatric patients undergoing sEEG exploration. METHOD We retrospectively included all consecutive patients undergoing sEEG at our centre between 11/2014 and 01/2018 with at least three contacts within I/O and excluded those with undetermined seizure onset zone (SOZ) by sEEG. We divided patients into three groups: 1) SOZ in I/O, 2) spread to I/O and 3) no I/O involvement. We compared pre-invasive characteristics, sEEG results, surgery and outcome for each group. RESULTS 29 of all 53 consecutive patients had an identified SOZ by sEEG and at least three contacts within the I/O and were included. 41% had I/O SOZ, 38% had I/O spread and 21% had no I/O involvement. Insula associated symptoms described in adult literature were not statistically different between the three groups. Complications due to sEEG were low (2 of 53 patients). Following I/O surgery, 63% were seizure free while an additional 26% of patients achieved seizure reduction. Postoperative deficits were seen in 75% of the patients but completely resolved in all but one patient. CONCLUSIONS Our data suggest an important role of the I/O region with frequent onset or propagation to the I/O region (at least 64% of all 53 sEEG cases). Semiology appears less specific than in adults. Insula depth electrode insertion is safe with subsequent good surgical outcomes albeit common transient deficits.
Collapse
Affiliation(s)
- Pablo Kappen
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom; Department of (Child) Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Christin Eltze
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Martin Tisdall
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - J Helen Cross
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom; University College London Institute of Child Health, London, United Kingdom
| | - Rachel Thornton
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
16
|
Guo K, Yuan M, Wei L, Lu J. Epileptogenic zone localization using a new automatic quantitative analysis based on normal brain glucose metabolism database. Int J Neurosci 2020; 131:128-134. [PMID: 32098541 DOI: 10.1080/00207454.2020.1733561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To assess the clinical value of voxel-based automatic quantitative analysis using a normal brain glucose metabolism database in the preoperative localization of focal intractable temporal lobe epilepsy patients. METHODS Patients with refractory temporal lobe epilepsy who underwent 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging were retrospectively enrolled from January to June 2017. Visual analysis was performed by two nuclear medicine radiologists, and the automatic quantitative analysis was carried out using MIMneuro software based the age- and gender-stratified normal brain glucose metabolism database. Setting postoperative outcomes as reference, the consistency between visual analysis and automatic quantitative analysis was tested by Cohen's kappa coefficient, and differences in localization of epileptic foci of the two methods were compared by Chi-square test. RESULTS A total of 32 patients intractable temporal lobe epilepsy were included in this study. There was a moderate agreement between the automatic quantitative analysis based on MIMneuro software and visual analysis (kappa coefficient = 0.472, p = 0.002). In terms of the efficiency of focus localization, the voxel-based automatic quantitative analysis was higher than that of visual analysis (Chi-square value = 6.969, p = 0.008). CONCLUSIONS The voxel-based automatic quantitative analysis combined with normal brain glucose metabolism database had a certain clinical application value for detection temporal lobe epilepsy.
Collapse
Affiliation(s)
- Kun Guo
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Menghui Yuan
- Department of Nuclear Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shanxi, China
| | - Longxiao Wei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shanxi, China
| | - Jie Lu
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
17
|
18F-Flurodeoxyglucose positron emission tomography with computed tomography (FDG PET/CT) findings in children with encephalitis and comparison to conventional imaging. Eur J Nucl Med Mol Imaging 2019; 46:1309-1324. [DOI: 10.1007/s00259-019-04302-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
|
18
|
Peyraga G, Robaine N, Khalifa J, Cohen-Jonathan-Moyal E, Payoux P, Laprie A. Molecular PET imaging in adaptive radiotherapy: brain. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:337-348. [PMID: 30497232 DOI: 10.23736/s1824-4785.18.03116-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Owing to their heterogeneity and radioresistance, the prognosis of primitive brain tumors, which are mainly glial tumors, remains poor. Dose escalation in radioresistant areas is a potential issue for improving local control and overall survival. This review focuses on advances in biological and metabolic imaging of brain tumors that are proving to be essential for defining tumor target volumes in radiation therapy (RT) and for increasing the use of DPRT (dose painting RT) and ART (adaptative RT), to optimize dose in radio-resistant areas. EVIDENCE ACQUISITION Various biological imaging modalities such as PET (hypoxia, glucidic metabolism, protidic metabolism, cellular proliferation, inflammation, cellular membrane synthesis) and MRI (spectroscopy) may be used to identify these areas of radioresistance. The integration of these biological imaging modalities improves the diagnosis, prognosis and treatment of brain tumors. EVIDENCE SYNTHESIS Technological improvements (PET and MRI), the development of research, and intensive cooperation between different departments are necessary before using daily metabolic imaging (PET and MRI) to treat patients with brain tumors. CONCLUSIONS The adaptation of treatment volumes during RT (ART) seems promising, but its development requires improvements in several areas and an interdisciplinary approach involving radiology, nuclear medicine and radiotherapy. We review the literature on biological imaging to outline the perspectives for using DPRT and ART in brain tumors.
Collapse
Affiliation(s)
- Guillaume Peyraga
- Department of Radiation Therapy, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Nesrine Robaine
- Department of Nuclear Medicine, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jonathan Khalifa
- Department of Radiation Therapy, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Paul Sabatier University, Toulouse III, Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Department of Radiation Therapy, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Paul Sabatier University, Toulouse III, Toulouse, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Purpan University Hospital Center, Toulouse, France
| | - Anne Laprie
- Department of Radiation Therapy, Claudius Regaud Institute, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France - .,Paul Sabatier University, Toulouse III, Toulouse, France
| |
Collapse
|