1
|
Keigley QJ, Fowler AM, O'Brien SR, Dehdashti F. Molecular Imaging of Steroid Receptors in Breast Cancer. Cancer J 2024; 30:142-152. [PMID: 38753748 PMCID: PMC11101139 DOI: 10.1097/ppo.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.
Collapse
Affiliation(s)
- Quinton J Keigley
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Sophia R O'Brien
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
2
|
Filippi L, Urso L, Schillaci O, Evangelista L. [ 18F]-FDHT PET for the Imaging of Androgen Receptor in Prostate and Breast Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:2613. [PMID: 37568977 PMCID: PMC10417772 DOI: 10.3390/diagnostics13152613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this systematic review is to provide a comprehensive overview of the role of fluoro-5α-dihydrotestosterone ([18F]-FDHT) for the in vivo imaging of androgen receptors (AR) through positron emission tomography (PET) in metastatic breast (mBC) and metastatic castration-resistant prostate cancer (mCRPC). Relevant studies published from 2013 up to May 2023 were selected by searching Scopus, PubMed and Web of Science. The selected imaging studies were analyzed using a modified version of the critical Appraisal Skills Programme (CASP). Eleven studies encompassing 321 patients were selected. Seven of the eleven selected papers included 266 subjects (82.2%) affected by mCRPC, while four encompassed 55 (17.2%) patients affected by mBC. [18F]-FDHT PET showed a satisfying test/retest reproducibility, and when compared to a histochemical analysis, it provided encouraging results for in vivo AR quantification both in mCRPC and mBC. [18F]-FDHT PET had a prognostic relevance in mCRPC patients submitted to AR-targeted therapy, while a clear association between [18F]-FDHT uptake and the bicalutamide response was not observed in women affected by AR-positive mBC. Further studies are needed to better define the role of [18F]-FDHT PET, alone or in combination with other tracers (i.e., [18F]-FDG/[18F]-FES), for patients' selection and monitoring during AR-targeted therapy, especially in the case of mBC.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Luca Urso
- Department of Nuclear Medicine—PET/CT Center, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy;
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
3
|
Zhu M, Liang Z, Feng T, Mai Z, Jin S, Wu L, Zhou H, Chen Y, Yan W. Up-to-Date Imaging and Diagnostic Techniques for Prostate Cancer: A Literature Review. Diagnostics (Basel) 2023; 13:2283. [PMID: 37443677 DOI: 10.3390/diagnostics13132283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer (PCa) faces great challenges in early diagnosis, which often leads not only to unnecessary, invasive procedures, but to over-diagnosis and treatment as well, thus highlighting the need for modern PCa diagnostic techniques. The review aims to provide an up-to-date summary of chronologically existing diagnostic approaches for PCa, as well as their potential to improve clinically significant PCa (csPCa) diagnosis and to reduce the proliferation and monitoring of PCa. Our review demonstrates the primary outcomes of the most significant studies and makes comparisons across the diagnostic efficacies of different PCa tests. Since prostate biopsy, the current mainstream PCa diagnosis, is an invasive procedure with a high risk of post-biopsy complications, it is vital we dig out specific, sensitive, and accurate diagnostic approaches in PCa and conduct more studies with milestone findings and comparable sample sizes to validate and corroborate the findings.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhen Liang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Feng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhipeng Mai
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shijie Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liyi Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huashan Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuliang Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Parent EE, Fowler AM. Nuclear Receptor Imaging In Vivo-Clinical and Research Advances. J Endocr Soc 2022; 7:bvac197. [PMID: 36655003 PMCID: PMC9838808 DOI: 10.1210/jendso/bvac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptors are transcription factors that function in normal physiology and play important roles in diseases such as cancer, inflammation, and diabetes. Noninvasive imaging of nuclear receptors can be achieved using radiolabeled ligands and positron emission tomography (PET). This quantitative imaging approach can be viewed as an in vivo equivalent of the classic radioligand binding assay. A main clinical application of nuclear receptor imaging in oncology is to identify metastatic sites expressing nuclear receptors that are targets for approved drug therapies and are capable of binding ligands to improve treatment decision-making. Research applications of nuclear receptor imaging include novel synthetic ligand and drug development by quantifying target drug engagement with the receptor for optimal therapeutic drug dosing and for fundamental research into nuclear receptor function in cells and animal models. This mini-review provides an overview of PET imaging of nuclear receptors with a focus on radioligands for estrogen receptor, progesterone receptor, and androgen receptor and their use in breast and prostate cancer.
Collapse
Affiliation(s)
- Ephraim E Parent
- Mayo Clinic Florida, Department of Radiology, Jacksonville, Florida 32224, USA
| | - Amy M Fowler
- Correspondence: Amy M. Fowler, MD, PhD, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252, USA.
| |
Collapse
|
5
|
Korsen JA, Kalidindi TM, Khitrov S, Samuels ZV, Chakraborty G, Gutierrez JA, Poirier JT, Rudin CM, Chen Y, Morris MJ, Pillarsetty N, Lewis JS. Molecular Imaging of Neuroendocrine Prostate Cancer by Targeting Delta-Like Ligand 3. J Nucl Med 2022; 63:1401-1407. [PMID: 35058323 PMCID: PMC9454466 DOI: 10.2967/jnumed.121.263221] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.
Collapse
Affiliation(s)
- Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Khitrov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia A Gutierrez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York; and
| | - Charles M Rudin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
6
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Schatka I, Bingel A, Schau F, Bluemel S, Messroghli DR, Frumkin D, Knebel F, Diekmann SM, Elsanhoury A, Tschöpe C, Hahn K, Amthauer H, Rogasch JMM, Wetz C. An optimized imaging protocol for [ 99mTc]Tc-DPD scintigraphy and SPECT/CT quantification in cardiac transthyretin (ATTR) amyloidosis. J Nucl Cardiol 2021; 28:2483-2496. [PMID: 34331215 PMCID: PMC8709821 DOI: 10.1007/s12350-021-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In [99mTc]Tc-DPD scintigraphy for myocardial ATTR amyloidosis, planar images 3 hour p.i. and SPECT/CT acquisition in L-mode are recommended. This study investigated if earlier planar images (1 hour p.i.) are beneficial and if SPECT/CT acquisition should be preferred in H-mode (180° detector angle) or L-mode (90°). METHODS In SPECT/CT phantom measurements (NaI cameras, N = 2; CZT, N = 1), peak contrast recovery (CRpeak) was derived from sphere inserts or myocardial insert (cardiac phantom; signal-to-background ratio [SBR], 10:1 or 5:1). In 25 positive and 38 negative patients (reference: endomyocardial biopsy or clinical diagnosis), Perugini scores and heart-to-contralateral (H/CL) count ratios were derived from planar images 1 hour and 3 hour p.i. RESULTS In phantom measurements, accuracy of myocardial CRpeak at SBR 10:1 (H-mode, 0.95-0.99) and reproducibility at 5:1 (H-mode, 1.02-1.14) was comparable for H-mode and L-mode. However, L-mode showed higher variability of background counts and sphere CRpeak throughout the field of view than H-mode. In patients, sensitivity/specificity were ≥ 95% for H/CL ratios at both time points and visual scoring 3 hour. At 1 hour, visual scores showed specificity of 89% and reduced reader's confidence. CONCLUSIONS Early DPD images provided no additional value for visual scoring or H/CL ratios. In SPECT/CT, H-mode is preferred over L-mode, especially if quantification is applied apart from the myocardium.
Collapse
Affiliation(s)
- Imke Schatka
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Bingel
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Franziska Schau
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel R Messroghli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - David Frumkin
- Medical Clinic for Cardiology, Angiology, Pneumology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte (CCM), Berlin, Germany
| | - Fabian Knebel
- Medical Clinic for Cardiology, Angiology, Pneumology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte (CCM), Berlin, Germany
| | - Sonja M Diekmann
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Ahmed Elsanhoury
- Berlin Institute of Health (BIH) Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health (BIH) Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
9
|
Potential Targets Other Than PSMA for Prostate Cancer Theranostics: A Systematic Review. J Clin Med 2021; 10:jcm10214909. [PMID: 34768432 PMCID: PMC8584491 DOI: 10.3390/jcm10214909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Prostate-specific membrane antigen (PSMA) is not sufficiently overexpressed in a small proportion of prostate cancer (PCa) patients, who require other strategies for imaging and/or treatment. We reviewed potential targets other than PSMA for PCa theranostics in nuclear medicine that have already been tested in humans. Methods: We performed a systematic web search in the PubMed and Cochrane databases, with no time restrictions by pooling terms (“prostate cancer”, “prostatic neoplasms”) and (“radioligand”, “radiotracer”). Included articles were clinical studies. The results were synthetized by the target type. Results: We included 38 studies on six different targets: gastrin-releasing peptide receptors (GRPRs) (n = 23), androgen receptor (n = 11), somatostatin receptors (n = 6), urokinase plasminogen activator surface receptor (n = 4), fibroblast activation protein (n = 2 studies) and integrin receptors (n = 1). GRPRs, the most studied target, has a lower expression in high-grade PCa, CRPC and bone metastases. Its use might be of higher interest in treating earlier stages of PCa or low-grade PCa. Radiolabeled fibroblast activation protein inhibitors were the most recent and promising molecules, but specific studies reporting their interest in PCa are needed. Conclusion: Theranostics in nuclear medicine will continue to develop in the future, especially for PCa patients. Targets other than PSMA exist and deserve to be promoted.
Collapse
|
10
|
Antunes IF, Dost RJ, Hoving HD, van Waarde A, Dierckx RAJO, Samplonius DF, Helfrich W, Elsinga PH, de Vries EFJ, de Jong IJ. Synthesis and Evaluation of 18F-Enzalutamide, a New Radioligand for PET Imaging of Androgen Receptors: A Comparison with 16β- 18F-Fluoro-5α-Dihydrotestosterone. J Nucl Med 2021; 62:1140-1145. [PMID: 33517325 DOI: 10.2967/jnumed.120.253641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022] Open
Abstract
16β-18F-fluoro-5α-dihydrotestosterone (18F-FDHT) is a radiopharmaceutical that has been investigated as a diagnostic agent for the assessment of androgen receptor (AR) density in prostate cancer using PET. However, 18F-FDHT is rapidly metabolized in humans and excreted via the kidneys into the urine, potentially compromising the detection of tumor lesions close to the prostate. Enzalutamide is an AR signaling inhibitor currently used in different stages of prostate cancer. Enzalutamide and its primary metabolite N-desmethylenzalutamide have an AR affinity comparable to that of FDHT but are excreted mainly via the hepatic route. Radiolabeled enzalutamide could thus be a suitable candidate PET tracer for AR imaging. Here, we describe the radiolabeling of enzalutamide with 18F. Moreover, the in vitro and in vivo behavior of 18F-enzalutamide was evaluated and compared with the current standard, 18F-FDHT. Methods:18F-enzalutamide was obtained by fluorination of the nitro precursor. In vitro cellular uptake studies with 18F-enzalutamide and 18F-FDHT were performed in LNCaP (AR-positive) and HEK293 (AR-negative) cells. Competition assays with both tracers were conducted on the LNCaP (AR-positive) cell line. In vivo PET imaging, ex vivo biodistribution, and metabolite studies with 18F-enzalutamide and 18F-FDHT were conducted on athymic nude male mice bearing an LNCaP xenograft in the shoulder. Results:18F-enzalutamide was obtained in 1.4% ± 0.9% radiochemical yield with an apparent molar activity of 6.2 ± 10.3 GBq/µmol. 18F-FDHT was obtained in 1.5% ± 0.8% yield with a molar activity of more than 25 GBq/µmol. Coincubation with an excess of 5α-dihydrotestosterone or enzalutamide significantly reduced the cellular uptake of 18F-enzalutamide and 18F-FDHT to about 50% in AR-positive LNCaP cells but not in AR-negative HEK293 cells. PET and biodistribution studies on male mice bearing a LnCaP xenograft showed about 3 times higher tumor uptake for 18F-enzalutamide than for 18F-FDHT. Sixty minutes after tracer injection, 93% of 18F-enzalutamide in plasma was still intact, compared with only 3% of 18F-FDHT. Conclusion: Despite its lower apparent molar activity, 18F-enzalutamide shows higher tumor uptake and better metabolic stability than 18F-FDHT and thus seems to have more favorable properties for imaging of AR with PET. However, further evaluation in other oncologic animal models and patients is warranted to confirm these results.
Collapse
Affiliation(s)
- Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Rutger J Dost
- Department of Urology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Hilde D Hoving
- Department of Urology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Douwe F Samplonius
- Surgical Research Laboratory, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wijnand Helfrich
- Surgical Research Laboratory, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Igle J de Jong
- Department of Urology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; and
| |
Collapse
|
11
|
Prognostic and Theranostic Applications of Positron Emission Tomography for a Personalized Approach to Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2021; 22:ijms22063036. [PMID: 33809749 PMCID: PMC8002334 DOI: 10.3390/ijms22063036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC.
Collapse
|
12
|
Boers J, Venema CM, de Vries EFJ, Hospers GAP, Boersma HH, Rikhof B, Dorbritz C, Glaudemans AWJM, Schröder CP. Serial [ 18F]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer. Eur J Cancer 2020; 144:151-161. [PMID: 33341447 DOI: 10.1016/j.ejca.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/11/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The androgen receptor (AR) is a potential target in metastatic breast cancer (MBC), and 16β-[18F]-fluoro-5α-dihydrotestosterone positron emission tomography ([18F]-FDHT-PET) can be used for noninvasive visualisation of AR. [18F]-FDHT uptake reduction during AR-targeting therapy reflects AR occupancy and might be predictive for treatment response. We assessed the feasibility of [18F]-FDHT-PET to detect changes in AR availability during bicalutamide treatment and correlated these changes with treatment response. PATIENTS AND METHODS Patients with AR + MBC, regardless of oestrogen receptor status, received an [18F]-FDHT-PET at baseline and after 4-6 weeks bicalutamide treatment. Baseline [18F]-FDHT uptake was expressed as maximum standardised uptake value. Percentage change in tracer uptake, corrected for background activity (SUVcor), between baseline and follow-up PET scan (% reduction), was assessed per-patient and lesion. Clinical benefit was determined in accordance with Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 or clinical evaluation (absence of disease progression for ≥24 weeks). RESULTS Baseline [18F]-FDHT-PET in 21 patients detected 341 of 515 lesions found with standard imaging and 21 new lesions. Follow-up [18F]-FDHT-PET was evaluable in 17 patients with 349 lesions, showing a decrease in median SUVcor from 1.3 to 0.7 per-patient and lesion (P < 0.001). Median % reduction per-patient was -45% and per-lesion -39%. In patients with progressive disease (n = 11), median % reduction was -30% versus -53% for patients who showed clinical benefit (in accordance with RECIST (n = 3) or clinical evaluation (n = 3); P = 0.338). CONCLUSION In this feasibility study, a bicalutamide-induced reduction in [18F]-FDHT uptake could be detected by follow-up [18F]-FDHT-PET in patients with AR + MBC. However, this change could not predict bicalutamide response. CLINICAL TRIAL INFORMATION NCT02697032.
Collapse
Affiliation(s)
- Jorianne Boers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Clasina M Venema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart Rikhof
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - Christine Dorbritz
- Medical Imaging Center, Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Jansen BHE, Cysouw MCF, Vis AN, van Moorselaar RJA, Voortman J, Bodar YJL, Schober PR, Hendrikse NH, Hoekstra OS, Boellaard R, Oprea-Lager DE. Repeatability of Quantitative 18F-DCFPyL PET/CT Measurements in Metastatic Prostate Cancer. J Nucl Med 2020; 61:1320-1325. [PMID: 31924729 DOI: 10.2967/jnumed.119.236075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Quantitative evaluation of radiolabeled prostate-specific membrane antigen (PSMA) PET scans may be used to monitor treatment response in patients with prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim of this study was to investigate the repeatability of quantitative PET/CT measurements using 18F-DCFPyL ([2-(3-(1-carboxy-5-[(6-18F-fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid], a second-generation 18F-PSMA-ligand) in patients with PCa. Methods: Twelve patients with metastatic PCa were prospectively included, of whom 2 were excluded from final analyses. Patients received 2 whole-body 18F-DCFPyL PET/CT scans (median dose, 317 MBq; uptake time, 120 min) within a median of 4 d (range, 1-11 d). After semiautomatic (isocontour-based) tumor delineation, the following lesion-based metrics were derived: mean, peak, and maximum tumor-to-blood ratio; SUVmean, SUVpeak, and SUVmax normalized to body weight; tumor volume; and total lesion uptake (TLU). Additionally, patient-based total tumor volume (TTV) (sum of PSMA-positive tumor volumes) and total tumor burden (TTB) (sum of all lesion TLUs) were derived. Repeatability was analyzed using repeatability coefficients (RC) and intraclass correlation coefficients. Additionally, the effect of point-spread function (PSF) image reconstruction on the repeatability of uptake metrics was evaluated. Results: In total, 36 18F-DCFPyL PET-positive lesions were analyzed (≤5 lesions per patient). The RCs for mean, peak, and maximum tumor-to-blood ratio were 31.8%, 31.7%, and 37.3%, respectively. For SUVmean, SUVpeak, and SUVmax, the RCs were 24.4%, 25.3%, and 31.0%, respectively. All intraclass correlation coefficients were at least 0.97. Tumor volume delineations were quite repeatable, with an RC of 28.1% for individual lesion volumes and 17.0% for TTV. TTB had an RC of 23.2% and 33.4% when based on SUVmean and mean tumor-to-blood ratio, respectively. Small lesions (<4.2 cm3) had worse repeatability for volume measurements. The repeatability of SUVpeak, TLU, and all patient-level metrics was not affected by PSF reconstruction. Conclusion: 18F-DCFPyL uptake measurements are quite repeatable and can be used for clinical validation in future treatment response assessment studies. Patient-based TTV may be preferred for multicenter studies because its repeatability was both high and robust to different image reconstructions.
Collapse
Affiliation(s)
- Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands .,Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Matthijs C F Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - André N Vis
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Reindert J A van Moorselaar
- Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Jens Voortman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Yves J L Bodar
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands.,Department of Urology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Patrick R Schober
- Department of Anesthesiology, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands; and
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - D E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ghafoor S, Burger IA, Vargas AH. Multimodality Imaging of Prostate Cancer. J Nucl Med 2019; 60:1350-1358. [PMID: 31481573 DOI: 10.2967/jnumed.119.228320] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a very heterogeneous disease, and contemporary management is focused on identification and treatment of the prognostically adverse high-risk tumors while minimizing overtreatment of indolent, low-risk tumors. In recent years, imaging has gained increasing importance in the detection, staging, posttreatment assessment, and detection of recurrence of prostate cancer. Several imaging modalities including conventional and functional methods are used in different clinical scenarios with their very own advantages and limitations. This continuing medical education article provides an overview of available imaging modalities currently in use for prostate cancer followed by a more specific section on the value of these different imaging modalities in distinct clinical scenarios, ranging from initial diagnosis to advanced, metastatic castration-resistant prostate cancer. In addition to established imaging indications, we will highlight some potential future applications of contemporary imaging modalities in prostate cancer.
Collapse
Affiliation(s)
- Soleen Ghafoor
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Irene A Burger
- Department of Nuclear Medicine, Baden Cantonal Hospital, Baden, Switzerland
| | - Alberto H Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| |
Collapse
|
15
|
Cysouw MCF, Kramer GM, Heijtel D, Schuit RC, Morris MJ, van den Eertwegh AJM, Voortman J, Hoekstra OS, Oprea-Lager DE, Boellaard R. Sensitivity of 18F-fluorodihydrotestosterone PET-CT to count statistics and reconstruction protocol in metastatic castration-resistant prostate cancer. EJNMMI Res 2019; 9:70. [PMID: 31363939 PMCID: PMC6667590 DOI: 10.1186/s13550-019-0531-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023] Open
Abstract
Objectives Whole body [18F]-fluorodihydrotestosterone positron emission tomography ([18F]FDHT PET) imaging directly targets the androgen receptor and is a promising prognostic and predictive biomarker in metastatic castration-resistant cancer (mCRPC). To optimize [18F]FDHT PET-CT for diagnostic and response assessment purposes, we assessed how count statistics and reconstruction protocol affect its accuracy, repeatability, and lesion detectability. Methods Whole body [18F]FDHT PET-CT scans were acquired on an analogue PET-CT on two consecutive days in 14 mCRPC patients harbouring a total of 336 FDHT-avid lesions. Images were acquired at 45 min post-injection of 200 MBq [18F]FDHT at 3 min per bed position. List-mode PET data were split on a count-wise basis, yielding two statistically independent scans with each 50% of counts. Images were reconstructed according to current EANM Research Ltd. (EARL1, 4 mm voxel) and novel EARL2 guidelines (4 mm voxel + PSF). Per lesion, we measured SUVpeak, SUVmax, SUVmean, and contrast-to-noise ratio (CNR). SUV was normalized to dose per bodyweight as well as to the parent plasma input curve integral. Variability was assessed with repeatability coefficients (RCs). Results Count reduction increased liver coefficient of variation from 9.0 to 12.5% and from 10.8 to 13.2% for EARL1 and EARL2, respectively. SUVs of EARL2 images were 12.0–21.7% higher than EARL1. SUVs of 100% and 50% count data were highly correlated (R2 > 0.98; slope = 0.97–1.01; ICC = 0.99–1.00). Intrascan variability was volume-dependent, and count reduction resulted in higher intrascan variability for EARL2 than EARL1 images. Intrascan RCs were lowest for SUVmean (8.5–10.6%), intermediate for SUVpeak (12.0–16.0%), and highest for SUVmax (17.8–22.2%). Count reduction increased test-retest variance non-significantly (p > 0.05) for all SUV types and normalizations. For SUVpeak at 50% of counts, RCs remained < 30% when small lesions were excluded. Splitting data reduced CNR by median 4.6% (interquartile range 1.2–8.7%) and 4.6% (interquartile range 1.2–8.7%) for EARL1 and EARL2 images, respectively. Conclusions Reducing [18F]FDHT PET acquisition time from 3 min to 1.5 per bed position resulted in a repeatability of SUVpeak (bodyweight) remaining ≤ 30%, which is generally acceptable for response monitoring purposes. However, EARL2 reconstruction was more affected, especially for SUVmax whose repeatability tended to exceed 30%. Lesion detectability was only slightly impaired by reducing acquisition time, which might not be clinically relevant in mCRPC. Electronic supplementary material The online version of this article (10.1186/s13550-019-0531-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthijs C F Cysouw
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Gerbrand M Kramer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Robert C Schuit
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Michael J Morris
- Department of Medicine, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, 353 E 68th St, New York, NY, 10065, USA
| | - Alfons J M van den Eertwegh
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Daniela E Oprea-Lager
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Ware RE, Williams S, Hicks RJ. Molecular Imaging of Recurrent and Metastatic Prostate Cancer. Semin Nucl Med 2019; 49:280-293. [DOI: 10.1053/j.semnuclmed.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Kramer GM, Yaqub M, Vargas HA, Schuit RC, Windhorst AD, van den Eertwegh AJM, van der Veldt AAM, Bergman AM, Burnazi EM, Lewis JS, Chua S, Staton KD, Beattie BJ, Humm JL, Davis ID, Weickhardt AJ, Scott AM, Morris MJ, Hoekstra OS, Lammertsma AA. Assessment of Simplified Methods for Quantification of 18F-FDHT Uptake in Patients with Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2019; 60:1221-1227. [PMID: 30850488 DOI: 10.2967/jnumed.118.220111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
18F-fluorodihydrotestosterone (18F-FDHT) PET/CT potentially provides a noninvasive method for assessment of androgen receptor expression in patients with metastatic castration-resistant prostate cancer (mCRPC). The objective of this study was to assess simplified methods for quantifying 18F-FDHT uptake in mCRPC patients and to assess effects of tumor perfusion on these 18F-FDHT uptake metrics. Methods: Seventeen mCRPC patients were included in this prospective observational multicenter study. Test and retest 30-min dynamic 18F-FDHT PET/CT scans with venous blood sampling were performed in 14 patients. In addition, arterial blood sampling and dynamic 15O-H2O scans were obtained in a subset of 6 patients. Several simplified methods were assessed: Patlak plots; SUV normalized to body weight (SUVBW), lean body mass (SUVLBM), whole blood (SUVWB), parent plasma activity concentration (SUVPP), area under the parent plasma curve (SUVAUC,PP), and area under the whole-blood input curve (SUVAUC,WB); and SUVBW corrected for sex hormone-binding globulin levels (SUVSHBG). Results were correlated with parameters derived from full pharmacokinetic 18F-FDHT and 15O-H2O. Finally, the repeatability of individual quantitative uptake metrics was assessed. Results: Eighty-seven 18F-FDHT-avid lesions were evaluated. 18F-FDHT uptake was best described by an irreversible 2-tissue-compartment model. Replacing the continuous metabolite-corrected arterial plasma input function with an image-derived input function in combination with venous sample data provided similar K i results (R 2 = 0.98). Patlak K i and SUVAUC,PP showed an excellent correlation (R 2 > 0.9). SUVBW showed a moderate correlation to K i (R 2 = 0.70, presumably due to fast 18F-FDHT metabolism. When calculating SUVSHBG, correlation to K i improved (R 2 = 0.88). The repeatability of full kinetic modeling parameters was inferior to that of simplified methods (repeatability coefficients > 36% vs. < 28%, respectively). 18F-FDHT uptake showed minimal blood flow dependency. Conclusion: 18F-FDHT kinetics in mCRPC patients are best described by an irreversible 2-tissue-compartment model with blood volume parameter. SUVAUC,PP showed a near-perfect correlation with the irreversible 2-tissue-compartment model analysis and can be used for accurate quantification of 18F-FDHT uptake in whole-body PET/CT scans. In addition, SUVSHBG could potentially be used as an even simpler method to quantify 18F-FDHT uptake when less complex scanning protocols and accuracy are required.
Collapse
Affiliation(s)
- Gerbrand M Kramer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Herbert A Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Astrid A M van der Veldt
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Departments of Medical Oncology, Radiology, and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andries M Bergman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eva M Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Sua Chua
- Department of Nuclear Medicine, Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Kevin D Staton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brad J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian D Davis
- Monash University and Eastern Health, Eastern Health Clinical School, Box Hill, Australia
| | - Andrew J Weickhardt
- Department of Medical Oncology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Victoria, Australia
| | - Andrew M Scott
- Department of Medical Oncology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Victoria, Australia.,Department of Molecular Imaging and Therapy, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jansen BHE, Kramer GM, Cysouw MCF, Yaqub MM, de Keizer B, Lavalaye J, Booij J, Vargas HA, Morris MJ, Vis AN, van Moorselaar RJA, Hoekstra OS, Boellaard R, Oprea-Lager DE. Healthy Tissue Uptake of 68Ga-Prostate-Specific Membrane Antigen, 18F-DCFPyL, 18F-Fluoromethylcholine, and 18F-Dihydrotestosterone. J Nucl Med 2019; 60:1111-1117. [PMID: 30630941 DOI: 10.2967/jnumed.118.222505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
PET is increasingly used for prostate cancer (PCa) diagnostics. Important PCa radiotracers include 68Ga-prostate-specific membrane antigen HBED-CC (68Ga-PSMA), 18F-DCFPyL, 18F-fluoromethylcholine (18F-FCH), and 18F-dihydrotestosterone (18F-FDHT). Knowledge on the variability of tracer uptake in healthy tissues is important for accurate PET interpretation, because malignancy is suspected only if the uptake of a lesion contrasts with its background. Therefore, the aim of this study was to quantify uptake variability of PCa tracers in healthy tissues and identify stable reference regions for PET interpretation. Methods: A total of 232 PCa PET/CT scans from multiple hospitals was analyzed, including 87 68Ga-PSMA scans, 50 18F-DCFPyL scans, 68 18F-FCH scans, and 27 18F-FDHT scans. Tracer uptake was assessed in the blood pool, lung, liver, bone marrow, and muscle using several SUVs (SUVmax, SUVmean, SUVpeak). Variability in uptake between patients was analyzed using the coefficient of variation (COV%). For all tracers, SUV reference ranges (95th percentiles) were calculated, which could be applicable as image-based quality control for future PET acquisitions. Results: For 68Ga-PSMA, the lowest uptake variability was observed in the blood pool (COV, 19.9%), which was significantly more stable than all other tissues (COV, 29.8%-35.2%; P = 0.001-0.024). For 18F-DCFPyL, the lowest variability was observed in the blood pool and liver (COV, 14.4% and 21.7%, respectively; P = 0.001-0.003). The least variable 18F-FCH uptake was observed in the liver, blood pool, and bone marrow (COV, 16.8%-24.2%; P = 0.001-0.012). For 18F-FDHT, low uptake variability was observed in all tissues, except the lung (COV, 14.6%-23.6%; P = 0.001-0.040). The different SUV types had limited effect on variability (COVs within 3 percentage points). Conclusion: In this multicenter analysis, healthy tissues with limited uptake variability were identified, which may serve as reference regions for PCa PET interpretation. These reference regions include the blood pool for 68Ga-PSMA and 18F-DCFPyL and the liver for 18F-FCH and 18F-FDHT. Healthy tissue SUV reference ranges are presented and applicable as image-based quality control.
Collapse
Affiliation(s)
- Bernard H E Jansen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands.,Department of Urology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Gem M Kramer
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthijs C F Cysouw
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Maqsood M Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jules Lavalaye
- Department of Nuclear Medicine, St-Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands; and
| | | | - Michael J Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - André N Vis
- Department of Urology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Reindert J A van Moorselaar
- Department of Urology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Daniela E Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|