1
|
Ebner R, Lohse A, Fabritius MP, Rübenthaler J, Wängler C, Wängler B, Schirrmacher R, Völter F, Schmid HP, Unterrainer LM, Öcal O, Hinterberger A, Spitzweg C, Auernhammer CJ, Geyer T, Ricke J, Bartenstein P, Holzgreve A, Grawe F. Validation of the standardization framework SSTR-RADS 1.0 for neuroendocrine tumors using the novel SSTR‑targeting peptide [ 18F]SiTATE. Eur Radiol 2024; 34:7222-7232. [PMID: 38769164 PMCID: PMC11519286 DOI: 10.1007/s00330-024-10788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Somatostatin receptor positron emission tomography/computed tomography (SSTR-PET/CT) using [68Ga]-labeled tracers is a widely used imaging modality for neuroendocrine tumors (NET). Recently, [18F]SiTATE, a SiFAlin tagged [Tyr3]-octreotate (TATE) PET tracer, has shown great potential due to favorable clinical characteristics. We aimed to evaluate the reproducibility of Somatostatin Receptor-Reporting and Data System 1.0 (SSTR-RADS 1.0) for structured interpretation and treatment planning of NET using [18F]SiTATE. METHODS Four readers assessed [18F]SiTATE-PET/CT of 95 patients according to the SSTR-RADS 1.0 criteria at two different time points. Each reader evaluated up to five target lesions per scan. The overall scan score and the decision on peptide receptor radionuclide therapy (PRRT) were considered. Inter- and intra-reader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS The ICC analysis on the inter-reader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 85%), overall scan score (ICC ≥ 90%), and the decision to recommend PRRT (ICC ≥ 85%) showed excellent agreement. However, significant differences were observed in recommending PRRT among experienced readers (ER) (p = 0.020) and inexperienced readers (IR) (p = 0.004). Compartment-based analysis demonstrated good to excellent inter-reader agreement for most organs (ICC ≥ 74%), except for lymph nodes (ICC ≥ 53%). CONCLUSION SSTR-RADS 1.0 represents a highly reproducible and consistent framework system for stratifying SSTR-targeted PET/CT scans, even using the novel SSTR-ligand [18F]SiTATE. Some inter-reader variability was observed regarding the evaluation of uptake intensity prior to PRRT as well as compartment scoring of lymph nodes, indicating that those categories require special attention during further clinical validation and might be refined in a future SSTR-RADS version 1.1. CLINICAL RELEVANCE STATEMENT SSTR-RADS 1.0 is a consistent framework for categorizing somatostatin receptor-targeted PET/CT scans when using [18F]SiTATE. The framework serves as a valuable tool for facilitating and improving the management of patients with NET. KEY POINTS SSTR-RADS 1.0 is a valuable tool for managing patients with NET. SSTR-RADS 1.0 categorizes patients with showing strong agreement across diverse reader expertise. As an alternative to [68Ga]-labeled PET/CT in neuroendocrine tumor imaging, SSTR-RADS 1.0 reliably classifies [18F]SiTATE-PET/CT.
Collapse
Affiliation(s)
- R Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - A Lohse
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - M P Fabritius
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Rübenthaler
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - C Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - B Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - R Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Canada
| | - F Völter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - H P Schmid
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - L M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - O Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Hinterberger
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
| | - C Spitzweg
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - C J Auernhammer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - T Geyer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - F Grawe
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Ebner R, Sheikh GT, Brendel M, Ricke J, Cyran CC. ESR Essentials: role of PET/CT in neuroendocrine tumors-practice recommendations by the European Society for Hybrid, Molecular and Translational Imaging. Eur Radiol 2024:10.1007/s00330-024-11095-7. [PMID: 39387873 DOI: 10.1007/s00330-024-11095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
Neuroendocrine neoplasms (NEN) originate from the secretory cells of the neuroendocrine system, with the majority arising in the gastrointestinal tract and pancreas. Given the heterogeneity in the biological behavior and morphological differentiation of these tumors, advanced imaging techniques are crucial for supporting the suspected diagnosis, accurate staging, and monitoring therapy. As most well-differentiated NEN demonstrate overexpression of somatostatin receptors (SSR) on the cell surface, SSR-directed PET/CT is considered the reference standard for imaging of this particular entity. SSR-PET/CT should be the imaging method of choice in every NEN G1 or G2 and considered for re-staging after both potentially curative and non-curative surgeries. The extent of SSR expression is also crucial for determining a patient's eligibility for peptide receptor radionuclide therapy (PRRT). PRRT utilizes [177Lu]Lu-DOTA-TATE to target the SSR receptor and can significantly prolong progression-free survival in patients with advanced, progressive neuroendocrine tumor of the gastroenteropancreatic system (GEP-NET). PET/CT is a central component of the multidisciplinary management of NEN. Variable follow-up intervals are recommended, considering that tumors with higher proliferation rates or advanced metastatic disease require more frequent assessments. The combination with other imaging modalities, like MRI, complements SSR-PET/CT, further enhancing overall diagnostic accuracy. KEY POINTS: Somatostatin receptor-PET/CT (SSR-PET/CT) is the guideline-recommended reference standard for imaging well-differentiated neuroendocrine tumors (NET). SSR-PET/CT should be the diagnostic imaging of choice for staging and post-therapy re-staging of grade 1 or 2 NET (G1 or G2). Variable follow-up intervals are recommended for NET G1 and G2. Tumors with higher proliferation rates or advanced metastatic disease necessitate more frequent assessments.
Collapse
Affiliation(s)
- Ricarda Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Werner RA, Zhi Y, Dreher N, Samnick S, Kosmala A, Higuchi T, Bundschuh L, Lapa C, Buck AK, Topp MS, Einsele H, Duell J, Serfling SE, Bundschuh RA. Interobserver Agreement Rates on CXCR4-Directed PET/CT in Patients with Marginal Zone Lymphoma. Mol Imaging Biol 2024; 26:774-779. [PMID: 39090381 PMCID: PMC11436430 DOI: 10.1007/s11307-024-01940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
C-X-C motif chemokine receptor 4 (CXCR4)-directed molecular imaging provides excellent read-out capabilities in patients with marginal zone lymphoma (MZL). We aimed to determine the interobserver agreement rate of CXCR4-targeted PET/CT among readers with different levels of experience. METHODS 50 subjects with MZL underwent CXCR4-targeted PET/CT, which were reviewed by four readers (including two experienced and two less experienced observers). The following 8 parameters were investigated: overall scan result, CXCR4 density in lymphoma tissue, extranodal organ involvement, No. of affected extranodal organs and extranodal organ metastases, lymph node (LN) involvement and No. of affected LN areas and LN metastases. We applied intraclass correlation coefficients (ICC; < 0.4, poor; 0.4-0.59, fair; 0.6-0.74, good and > 0.74 excellent agreement rates). RESULTS Among all readers, fair agreement was recorded for No. of affected extranodal organs (ICC, 0.40; 95% confidence interval [CI], 0.25-0.68), overall scan result (ICC, 0.42; 95%CI, 0.28-0.57), CXCR4 density in lymphoma tissue (ICC, 0.52; 95%CI, 0.38-0.66), and No. of extranodal organ metastases (ICC, 0.55; 95%CI, 0.41-0.61) and LN involvement (ICC, 0.59; 95%CI, 0.46-0.71). Good agreement rates were observed for No. of LN metastases (ICC, 0.71; 95%CI, 0.60-0.81) and No. of LN areas (ICC, 0.73; 95%CI, 0.63-0.82), while extranodal organ involvement (ICC, 0.35; 95%CI, 0.21-0.51) achieved poor concordance. On a reader-by-reader comparison, the experienced readers achieved significantly higher agreement rates in 4/8 (50%) investigated scan items (ICC, range, 0.21-0.90, P < / = 0.04). In the remaining 4/8 (50%), a similar trend with higher ICCs for the experienced readers was recorded (n.s.). CONCLUSION CXCR4-directed PET/CT mainly provided fair to good agreement rates for scan assessment, while a relevant level of experience seems to be required for an accurate imaging read-out.
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University, University Hospital Frankfurt, Frankfurt, Germany
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingjun Zhi
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lena Bundschuh
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Max S Topp
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Duell
- Medical Department II, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany.
| | - Ralph A Bundschuh
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
4
|
Vulasala SS, Virarkar M, Gopireddy D, Waters R, Alkhasawneh A, Awad Z, Maxwell J, Ramani N, Kumar S, Onteddu N, Morani AC. Small Bowel Neuroendocrine Neoplasms-A Review. J Comput Assist Tomogr 2024; 48:563-576. [PMID: 38110305 DOI: 10.1097/rct.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) are rapidly evolving small bowel tumors, and the patients are asymptomatic at the initial stages. Metastases are commonly observed at the time of presentation and diagnosis. This review addresses the small bowel NEN (SB-NEN) and its molecular, histological, and imaging features, which aid diagnosis and therapy guidance. Somatic cell number alterations and epigenetic mutations are studied to be responsible for sporadic and familial SB-NEN. The review also describes the grading of SB-NEN in addition to rare histological findings such as mixed neuroendocrine-non-NENs. Anatomic and nuclear imaging with conventional computed tomography, magnetic resonance imaging, computed tomographic enterography, and positron emission tomography are adopted in clinical practice for diagnosing, staging, and follow-up of NEN. Along with the characteristic imaging features of SB-NEN, the therapeutic aspects of imaging, such as peptide receptor radionuclide therapy, are discussed in this review.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- From the Department of Radiology, University of Florida College of Medicine, Jacksonville
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Rebecca Waters
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Ziad Awad
- Surgery, University of Florida College of Medicine, Jacksonville, FL
| | - Jessica Maxwell
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center
| | - Nisha Ramani
- Department of Pathology, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Sindhu Kumar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Nirmal Onteddu
- Department of Internal Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Ajaykumar C Morani
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Ambrosini V, Fortunati E, Fanti S, Ursprung S, Asmundo L, O'Shea A, Kako B, Lee S, Furtado FS, Blake M, Goiffon RJ, Najmi Z, Hesami M, Murakami T, Domachevsky L, Catalano OA. State-of-the-Art Hybrid Imaging of Neuroendocrine Neoplasms. J Comput Assist Tomogr 2024; 48:510-520. [PMID: 38518197 DOI: 10.1097/rct.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) may be challenging to diagnose due to their small size and diverse anatomical locations. Hybrid imaging techniques, specifically positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI), represent the current state-of-the-art for evaluating NENs. The preferred radiopharmaceuticals for NEN PET imaging are gallium-68 (68Ga) DOTA-peptides, which target somatostatin receptors (SSTR) overexpressed on NEN cells. Clinical applications of [68Ga]Ga-DOTA-peptides PET/CT include diagnosis, staging, prognosis assessment, treatment selection, and response evaluation. Fluorodeoxyglucose-18 (18F-FDG) PET/CT aids in detecting low-SSTR-expressing lesions and helps in patient stratification and treatment planning, particularly in grade 3 neuroendocrine tumors (NETs). New radiopharmaceuticals such as fluorine-labeled SSTR agonists and SSTR antagonists are emerging as alternatives to 68Ga-labeled peptides, offering improved detection rates and favorable biodistribution. The maturing of PET/MRI brings advantages to NEN imaging, including simultaneous acquisition of PET and MRI images, superior soft tissue contrast resolution, and motion correction capabilities. The PET/MRI with [68Ga]Ga-DOTA-peptides has demonstrated higher lesion detection rates and more accurate lesion classification compared to PET/CT. Overall, hybrid imaging offers valuable insights in the diagnosis, staging, and treatment planning of NENs. Further research is needed to refine response assessment criteria and standardize reporting guidelines.
Collapse
Affiliation(s)
| | - Emilia Fortunati
- From the Nuclear Medicine, Alma Mater Studiorum, University of Bologna
| | | | | | | | - Aileen O'Shea
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bashar Kako
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Blake
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Gao J, Zhou J, Liu C, Pan Y, Lin X, Zhang Y. Outcome prediction of SSTR-RADS-3A and SSTR-RADS-3B lesions in patients with neuroendocrine tumors based on 68Ga-DOTATATE PET/MR. J Cancer Res Clin Oncol 2024; 150:272. [PMID: 38795250 PMCID: PMC11127844 DOI: 10.1007/s00432-024-05776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
PURPOSE Somatostatin receptor (SSTR)-targeted PET imaging has emerged as a common approach to evaluating those patients with well-differentiated neuroendocrine tumors (NETs). The SSTR reporting and data system (SSTR-RADS) version 1.0 provides a means of categorizing lesions from 1 to 5 according to the likelihood of NET involvement, with SSTR-RADS-3A (soft-tissue) and SSTR-RADS-3B (bone) lesions being those suggestive of but without definitive NET involvement. The goal of the present study was to assess the ability of 68Ga-DOTATATE PET/MR imaging data to predict outcomes for indeterminate SSTR-RADS-3A and 3B lesions. METHODS NET patients with indeterminate SSTR-RADS-3A or SSTR-RADS-3B lesions who underwent 68Ga-DOTATATE PET/MR imaging from April 2020 through August 2023 were retrospectively evaluated. All patients underwent follow-up through December 2023 (median, 17 months; (3-31 months)), with imaging follow-up or biopsy findings ultimately being used to classify lesions as malignant or benign. Lesion maximum standardized uptake value (SUVmax) along with minimum and mean apparent diffusion coefficient (ADCmin and ADCmean) values were measured and assessed for correlations with outcomes on follow-up. RESULTS In total, 33 indeterminate SSTR-RADS-3 lesions from 22 patients (19 SSTR-RADS-3A and 14 SSTR-RADS-3B) were identified based upon baseline 68Ga-DOTATATE PET/MR findings. Over the course of follow-up, 16 of these lesions (48.5%) were found to exhibit true NET positivity, including 9 SSTR-RADS-3A and 7 SSTR-RADS-3B lesions. For SSTR-RADS-3A lymph nodes, a diameter larger than 0.7 cm and an ADCmin of 779 × 10-6mm2/s or lower were identified as being more likely to be associated with metastatic lesions. Significant differences in ADCmin and ADCmean were identified when comparing metastatic and non-metastatic SSTR-RADS-3B bone lesions (P < 0.05), with these parameters offering a high predictive ability (AUC = 0.94, AUC = 0.86). CONCLUSION Both diameter and ADCmin can aid in the accurate identification of the nature of lesions associated with SSTR-RADS-3A lymph nodes, whereas ADCmin and ADCmean values can inform the accurate interpretation of SSTR-RADS-3B bone lesions.
Collapse
Affiliation(s)
- Jing Gao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Jinxin Zhou
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Virarkar MK, Montanarella M, Itani M, Calimano-Ramirez L, Gopireddy D, Bhosale P. PET/MRI imaging in neuroendocrine neoplasm. Abdom Radiol (NY) 2023; 48:3585-3600. [PMID: 36525051 DOI: 10.1007/s00261-022-03757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor (SSTR) PET is critical for evaluating NENs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI advances in the diagnosis, staging, treatment, and surveillance of NENs.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Matthew Montanarella
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kings Highway Blvd, Campus Box 8131, St Louis, MO, 63110, USA
| | - Luis Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA.
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Priya Bhosale
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Werner RA, Hartrampf PE, Fendler WP, Serfling SE, Derlin T, Higuchi T, Pienta KJ, Gafita A, Hope TA, Pomper MG, Eiber M, Gorin MA, Rowe SP. Prostate-specific Membrane Antigen Reporting and Data System Version 2.0. Eur Urol 2023; 84:491-502. [PMID: 37414701 DOI: 10.1016/j.eururo.2023.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Prostate-specific Membrane Antigen Reporting and Data System (PSMA-RADS) was introduced for standardized reporting, and PSMA-RADS version 1.0 allows classification of lesions based on their likelihood of representing a site of prostate cancer on PSMA-targeted positron emission tomography (PET). In recent years, this system has extensively been investigated. Increasing evidence has accumulated that the different categories reflect their actual meanings, such as true positivity in PSMA-RADS 4 and 5 lesions. Interobserver agreement studies demonstrated high concordance among a broad spectrum of 68Ga- or 18F-labeled, PSMA-directed radiotracers, even for less experienced readers. Moreover, this system has also been applied to challenging clinical scenarios and to assist in clinical decision-making, for example, to avoid overtreatment in oligometastatic disease. Nonetheless, with an increasing use of PSMA-RADS 1.0, this framework has shown not only benefits, but also limitations, for example, for follow-up assessment of locally treated lesions. Thus, we aimed to update the PSMA-RADS framework to include a refined set of categories in order to optimize lesion-level characterization and best assist in clinical decision-making (PSMA-RADS version 2.0).
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kenneth J Pienta
- The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrei Gafita
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin G Pomper
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven P Rowe
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Feuerecker B, Heimer MM, Geyer T, Fabritius MP, Gu S, Schachtner B, Beyer L, Ricke J, Gatidis S, Ingrisch M, Cyran CC. Artificial Intelligence in Oncological Hybrid Imaging. Nuklearmedizin 2023; 62:296-305. [PMID: 37802057 DOI: 10.1055/a-2157-6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sijing Gu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
- MPI, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Gabiache G, Zadro C, Rozenblum L, Vezzosi D, Mouly C, Thoulouzan M, Guimbaud R, Otal P, Dierickx L, Rousseau H, Trepanier C, Dercle L, Mokrane FZ. Image-Guided Precision Medicine in the Diagnosis and Treatment of Pheochromocytomas and Paragangliomas. Cancers (Basel) 2023; 15:4666. [PMID: 37760633 PMCID: PMC10526298 DOI: 10.3390/cancers15184666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this comprehensive review, we aimed to discuss the current state-of-the-art medical imaging for pheochromocytomas and paragangliomas (PPGLs) diagnosis and treatment. Despite major medical improvements, PPGLs, as with other neuroendocrine tumors (NETs), leave clinicians facing several challenges; their inherent particularities and their diagnosis and treatment pose several challenges for clinicians due to their inherent complexity, and they require management by multidisciplinary teams. The conventional concepts of medical imaging are currently undergoing a paradigm shift, thanks to developments in radiomic and metabolic imaging. However, despite active research, clinical relevance of these new parameters remains unclear, and further multicentric studies are needed in order to validate and increase widespread use and integration in clinical routine. Use of AI in PPGLs may detect changes in tumor phenotype that precede classical medical imaging biomarkers, such as shape, texture, and size. Since PPGLs are rare, slow-growing, and heterogeneous, multicentric collaboration will be necessary to have enough data in order to develop new PPGL biomarkers. In this nonsystematic review, our aim is to present an exhaustive pedagogical tool based on real-world cases, dedicated to physicians dealing with PPGLs, augmented by perspectives of artificial intelligence and big data.
Collapse
Affiliation(s)
- Gildas Gabiache
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Charline Zadro
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Laura Rozenblum
- Department of Nuclear Medicine, Sorbonne Université, AP-HP, Hôpital La Pitié-Salpêtrière, 75013 Paris, France
| | - Delphine Vezzosi
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | - Céline Mouly
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | | | - Rosine Guimbaud
- Department of Oncology, Rangueil University Hospital, 31400 Toulouse, France
| | - Philippe Otal
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Lawrence Dierickx
- Department of Nuclear Medicine, IUCT-Oncopole, 31059 Toulouse, France;
| | - Hervé Rousseau
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Christopher Trepanier
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| |
Collapse
|
11
|
Borghesani M, Gervaso L, Cella CA, Benini L, Ciardiello D, Algeri L, Ferrero A, Valenza C, Guidi L, Zampino MG, Spada F, Fazio N. Promising targetable biomarkers in pancreatic neuroendocrine tumours. Expert Rev Endocrinol Metab 2023; 18:387-398. [PMID: 37743651 DOI: 10.1080/17446651.2023.2248239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In the treatment scenario of PanNETs-targeted therapies are desired but limited, as rarity and heterogeneity on PanNETs pose limitations to their development. AREAS COVERED We performed a literature review searching for promising druggable biomarkers and potential treatments to be implemented in the next future. We focused on treatments which have already reached clinical experimentation, although in early phases. Six targets were identified, namely Hsp90, HIFa, HDACs, CDKs, uPAR, and DDR. Even though biological rational is strong, so far reported efficacy outcomes are quite disappointing. The reason of that should be searched in the patients' heterogeneity, lack of biomarker selection, poor knowledge of interfering mechanisms as well as difficulties in patients accrual. Moreover, different ways to assess treatment efficacy should be considered, other than response rate, in light of the more indolent nature of NETs. EXPERT OPINION Development of targeted treatments in PanNETs is still an uncovered area, far behind other more frequent cancers. Rarity of NETs led to accrual of unselected populations, possibly jeopardizing the drug efficacy. Better patients' selection, both in terms of topography, grading and biomarkers is crucial and will help understanding which role targeted therapies can really play in these tumors.
Collapse
Affiliation(s)
- M Borghesani
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - L Gervaso
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
- Molecular Medicine Program, University of Pavia, Pavia, Lombardia, IT, Italy
| | - C A Cella
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - L Benini
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - D Ciardiello
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - L Algeri
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - A Ferrero
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - C Valenza
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - L Guidi
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - M G Zampino
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - F Spada
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| | - N Fazio
- Division of Gastrointestinal and Neuroendocrine Cancer Medical Treatment, European Institute of Oncology, Milano, IT, Italy
| |
Collapse
|
12
|
Piscopo L, Zampella E, Pellegrino S, Volpe F, Nappi C, Gaudieri V, Fonti R, Vecchio SD, Cuocolo A, Klain M. Diagnosis, Management and Theragnostic Approach of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:3483. [PMID: 37444593 DOI: 10.3390/cancers15133483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) constitute an ideal target for radiolabeled somatostatin analogs. The theragnostic approach is able to combine diagnosis and therapy by the identification of a molecular target that can be diagnosed and treated with the same radiolabeled compound. During the last years, advances in functional imaging with the introduction of somatostatin analogs and peptide receptor radionuclide therapy, have improved the diagnosis and treatment of GEP-NENs. Moreover, PET/CT imaging with 18F-FDG represents a complementary tool for prognostic evaluation of patients with GEP-NENs. In the field of personalized medicine, the theragnostic approach has emerged as a promising tool in diagnosis and management of patients with GEP-NENs. The aim of this review is to summarize the current evidence on diagnosis and management of patients with GEP-NENs, focusing on the theragnostic approach.
Collapse
Affiliation(s)
- Leandra Piscopo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
O'Shea A, Iravani A, Saboury B, Jadvar H, Catalano O, Mahmood U, Heidari P. Integrating Theranostics Into Patient Care Pathways: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2023; 220:619-629. [PMID: 36321986 PMCID: PMC10133840 DOI: 10.2214/ajr.22.28237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theranostics describes the coupling of a diagnostic biomarker and a therapeutic agent (i.e., a theranostic pair) that have a common target in tumor cells or their microenvironment. The term is increasingly associated with in vivo nuclear medicine oncologic applications that couple diagnostic imaging by means of gamma radiation with concomitant localized high-energy particulate radiation to a tissue expressing the common target. Several theranostic pairs have been translated into clinical practice in the United States and are poised to become a mainstay of cancer treatment. The purposes of this article are to review experience with theranostics for solid-organ malignancies and to address the practical integration into care pathways of β-emitting therapies that include somatostatin analogue radioligands for neuroendocrine tumors, PSMA-directed therapy for prostate cancer, and 131I-MIBG therapy for tumors of neural crest origin. Toxicities related to theranostics administration and indications for cessation of therapy in patients who experience adverse events are also discussed. A multidisciplinary team-based approach for identifying patients most likely to respond to these agents, determining the optimal time for therapy delivery, and managing patient care throughout the therapeutic course is critical to the success of a radiotheranostic program.
Collapse
Affiliation(s)
- Aileen O'Shea
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit St, White 427, Boston, MA 02115
| | | | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hossein Jadvar
- Division of Nuclear Medicine and Molecular Imaging Center, Keck School of Medicine and Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Onofrio Catalano
- Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA
| | - Umar Mahmood
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit St, White 427, Boston, MA 02115
| | - Pedram Heidari
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit St, White 427, Boston, MA 02115
| |
Collapse
|
14
|
Eilsberger F, Kreissl MC, Luster M, Pfestroff A. [Therapy concepts for thyroid carcinoma]. Laryngorhinootologie 2023. [PMID: 37011888 DOI: 10.1055/a-1861-7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Theranostics via the sodium iodide symporter (NIS) offer a unique option in differentiated thyroid carcinoma. The diagnostic and therapeutic nuclides have similar uptake and kinetics, making the NIS the most important theranostic target in this disease. Radioiodine refractory thyroid carcinomas (RRTC) are characterised by reduced/absent NIS expression, thus eliminating this structure as a theranostic target. Also due to limited therapeutic options, there are approaches to generate new theranostic targets in RRTC, via the expression of somatostatin receptors (SSTR) or the prostate-specific membrane antigen (PSMA), but the current evidence does not yet allow a final evaluation of the prospects of success.
Collapse
Affiliation(s)
| | - Michael C Kreissl
- Abteilung für Nuklearmedizin, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | - Markus Luster
- Nuclearmedicine, University of Marburg, Marburg, Germany
| | - Andreas Pfestroff
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| |
Collapse
|
15
|
Neuroendocrine Tumor Therapy Response Assessment. PET Clin 2023; 18:267-286. [PMID: 36858748 DOI: 10.1016/j.cpet.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Peptide receptor radionuclide therapy has become an integral part of management of neuroendocrine neoplasms. Gallium-68- and lutetium-177-labeled somatostatin receptor analogues have replaced yttrium-90- and 111-indium-based tracers. Several newer targeted therapies are also being used in clinical and research settings. It is imperative to accurately evaluate the response to these agents. The characteristics of NENs and the response patterns of the targeted therapies make response assessment in this group challenging. This article provides an overview of the strengths and weaknesses of the various biomarkers available for response assessment.
Collapse
|
16
|
Khatri W, Spiro E, Henderson A, Rowe SP, Solnes LB. Gastro-Entero-Pancreatic Tumors: FDG Positron Emission Tomography/Computed Tomography. PET Clin 2023; 18:243-250. [PMID: 36707371 DOI: 10.1016/j.cpet.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gastro-entero-pancreatic tumors comprise a group of heterogenous neoplasms, with medical imaging being paramount in the diagnosis, staging, and treatment planning of these tumors. Moreover, with the advent of newer radiopharmaceuticals, such as 68 Ga-labeled and 64 Cu-labeled somatostatin analogs (eg, 68 Ga-DOTATOC, 68 Ga-DOTATATE, 68 Ga-DOTANOC, and 64Cu-DOTATATE) that bind to the somatostatin receptor (SSTR), molecular imaging plays an increasing and critical role in the diagnosis, staging, and treatment planning of these neoplasms. Dual-tracer imaging with 18F-FDG PET/CT and SSTR agents may play a significant role in treatment planning and predicting patient outcomes in the setting of high-grade or poorly differentiated neuroendocrine tumors.
Collapse
Affiliation(s)
- Wajahat Khatri
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3, Baltimore, MD 21287, USA
| | - Ergi Spiro
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3, Baltimore, MD 21287, USA
| | - Amanda Henderson
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3, Baltimore, MD 21287, USA
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3, Baltimore, MD 21287, USA
| | - Lilja B Solnes
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
Grawe F, Ebner R, Geyer T, Beyer L, Winkelmann M, Sheikh GT, Eschbach R, Schmid-Tannwald C, Cyran CC, Ricke J, Bartenstein P, Heimer MM, Faggioni L, Spitzweg C, Fabritius MP, Auernhammer CJ, Ruebenthaler J. Validation of the SSTR-RADS 1.0 for the structured interpretation of SSTR-PET/CT and treatment planning in neuroendocrine tumor (NET) patients. Eur Radiol 2023; 33:3416-3424. [PMID: 36964768 PMCID: PMC10121493 DOI: 10.1007/s00330-023-09518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVES The recently proposed standardized reporting and data system for somatostatin receptor (SSTR)-targeted PET/CT SSTR-RADS 1.0 showed promising first results in the assessment of diagnosis and treatment planning with peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET). This study aimed to determine the intra- and interreader agreement of SSTR-RADS 1.0. METHODS SSTR-PET/CT scans of 100 patients were independently evaluated by 4 readers with different levels of expertise according to the SSTR-RADS 1.0 criteria at 2 time points within 6 weeks. For each scan, a maximum of five target lesions were freely chosen by each reader (not more than three lesions per organ) and stratified according to the SSTR-RADS 1.0 criteria. Overall scan score and binary decision on PRRT were assessed. Intra- and interreader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS Interreader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 0.91) and overall scan score (ICC ≥ 0.93) was excellent. The decision to state "functional imaging fulfills requirements for PRRT and qualifies patient as potential candidate for PRRT" also demonstrated excellent agreement among all readers (ICC ≥ 0.86). Intrareader agreement was excellent even among different experience levels when comparing target lesion-based scores (ICC ≥ 0.98), overall scan score (ICC ≥ 0.93), and decision for PRRT (ICC ≥ 0.88). CONCLUSION SSTR-RADS 1.0 represents a highly reproducible and accurate system for stratifying SSTR-targeted PET/CT scans with high intra- and interreader agreement. The system is a promising approach to standardize the diagnosis and treatment planning in NET patients. KEY POINTS • SSTR-RADS 1.0 offers high reproducibility and accuracy. • SSTR-RADS 1.0 is a promising method to standardize diagnosis and treatment planning for patients with NET.
Collapse
Affiliation(s)
- Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany.
| | - Ricarda Ebner
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ralf Eschbach
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Christine Spitzweg
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS Certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
18
|
Chakraborty K, Mondal J, An JM, Park J, Lee YK. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15030971. [PMID: 36986832 PMCID: PMC10054444 DOI: 10.3390/pharmaceutics15030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Radiopharmaceutical therapy, which can detect and treat tumours simultaneously, was introduced more than 80 years ago, and it has changed medical strategies with respect to cancer. Many radioactive radionuclides have been developed, and functional, molecularly modified radiolabelled peptides have been used to produce biomolecules and therapeutics that are vastly utilised in the field of radio medicine. Since the 1990s, they have smoothly transitioned into clinical application, and as of today, a wide variety of radiolabelled radionuclide derivatives have been examined and evaluated in various studies. Advanced technologies, such as conjugation of functional peptides or incorporation of radionuclides into chelating ligands, have been developed for advanced radiopharmaceutical cancer therapy. New radiolabelled conjugates for targeted radiotherapy have been designed to deliver radiation directly to cancer cells with improved specificity and minimal damage to the surrounding normal tissue. The development of new theragnostic radionuclides, which can be used for both imaging and therapy purposes, allows for more precise targeting and monitoring of the treatment response. The increased use of peptide receptor radionuclide therapy (PRRT) is also important in the targeting of specific receptors which are overexpressed in cancer cells. In this review, we provide insights into the development of radionuclides and functional radiolabelled peptides, give a brief background, and describe their transition into clinical application.
Collapse
Affiliation(s)
- Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| |
Collapse
|
19
|
PET Criteria by Cancer Type from Imaging Interpretation to Treatment Response Assessment: Beyond FDG PET Score. Life (Basel) 2023; 13:life13030611. [PMID: 36983767 PMCID: PMC10057339 DOI: 10.3390/life13030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Background: in recent years, the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) has emerged as a reliable diagnostic tool in a wide variety of pathological conditions. This review aims to collect and review PET criteria developed for interpretation and treatment response assessment in cases of non-[18F]fluorodeoxyglucose ([18F]FDG) imaging in oncology. Methods: A wide literature search of the PubMed/MEDLINE, Scopus and Google Scholar databases was made to find relevant published articles about non-[18F]FDG PET response criteria. Results: The comprehensive computer literature search revealed 183 articles. On reviewing the titles and abstracts, 149 articles were excluded because the reported data were not within the field of interest. Finally, 34 articles were selected and retrieved in full-text versions. Conclusions: available criteria are a promising tool for the interpretation of non-FDG PET scans, but also to assess the response to therapy and therefore to predict the prognosis. However, oriented clinical trials are needed to clearly evaluate their impact on patient management.
Collapse
|
20
|
Feuerecker B, Heimer MM, Geyer T, Fabritius MP, Gu S, Schachtner B, Beyer L, Ricke J, Gatidis S, Ingrisch M, Cyran CC. Artificial Intelligence in Oncological Hybrid Imaging. ROFO-FORTSCHR RONTG 2023; 195:105-114. [PMID: 36170852 DOI: 10.1055/a-1909-7013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making.. CITATION FORMAT · Feuerecker B, Heimer M, Geyer T et al. Artificial Intelligence in Oncological Hybrid Imaging. Fortschr Röntgenstr 2023; 195: 105 - 114.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sijing Gu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany.,MPI, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Hope TA, Allen-Auerbach M, Bodei L, Calais J, Dahlbom M, Dunnwald LK, Graham MM, Jacene HA, Heath CL, Mittra ES, Wright CL, Fendler WP, Herrmann K, Taïeb D, Kjaer A. SNMMI Procedure Standard/EANM Practice Guideline for SSTR PET: Imaging Neuroendocrine Tumors. J Nucl Med 2023; 64:204-210. [PMID: 36725249 DOI: 10.2967/jnumed.122.264860] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/30/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Thomas A Hope
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California; .,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Martin Allen-Auerbach
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Lisa Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Magnus Dahlbom
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Lisa K Dunnwald
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael M Graham
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heather A Jacene
- Department of Imaging, Dana-Farber Cancer Institute, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Courtney Lawhn Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Erik S Mittra
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Chadwick L Wright
- Wright Center of Innovation and Biomedical Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France; and
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Molecular and Anatomic Imaging of Neuroendocrine Tumors. Surg Oncol Clin N Am 2022; 31:649-671. [DOI: 10.1016/j.soc.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Hartrampf P, Werner R, Buck A. Theranostics bei gut bis mäßig differenzierten GEP-NEN. Zentralbl Chir 2022; 147:249-255. [DOI: 10.1055/a-1826-3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungNeuroendokrine Neoplasien (NEN) sind seltene, heterogene und typischerweise langsam wachsende Tumoren. Die häufigsten Lokalisationen finden sich im gastro-entero-pankreatischen System
(GEP-NEN). NENs werden nach proliferativer Aktivität (Ki-67-Index) eingeteilt (G1–3). Gut differenzierte Tumoren exprimieren dabei typischerweise Somatostatinrezeptoren (SSTR), die als
Zielstruktur in der nuklearmedizinischen Theranostik dienen. Bei diesem Prinzip kann nach einer diagnostischen molekularen Bildgebung, meist mittels
Positronenemissionstomografie/Computertomografie (PET/CT), eine individuell zugeschnittene Peptidradiorezeptortherapie (PRRT) mit einem β-Strahler-markierten Radiopharmakon erfolgen. In
Metaanalysen zeigte die Diagnostik mittels SSTR-gerichteter PET/CT eine Sensitivität von 93% und eine Spezifität von 96%. Die SSTR-gerichtete Diagnostik kann auch zur radioaktiven Markierung
von Tumoren verwendet werden, um eine zielgerichtete Chirurgie zu ermöglichen. Die Indikation zur Einleitung einer PRRT soll stets in einer interdisziplinären Tumorkonferenz getroffen
werden. Ein Tumorprogress unter der vorangegangenen Therapie sollte dokumentiert sein. Die Therapie wird intravenös und insgesamt 4-mal in 8-wöchigem Abstand in spezialisierten
nuklearmedizinischen Zentren verabreicht. Die Wirksamkeit der PRRT wurde in der NETTER-1-Studie prospektiv untersucht und konnte eine signifikante Verbesserung des progressionsfreien
Überlebens (primärer Endpunkt) zeigen. Ausgehend von diesen Studienergebnissen steht mit Lutathera (177Lu-DOTATATE) inzwischen ein in Deutschland zugelassenes Radiopharmazeutikum zu
Behandlung von nicht resektablen oder metastasierten bzw. progredienten, gut differenzierten (G1 und G2), SSTR-positiven GEP-NEN zur Verfügung.
Collapse
Affiliation(s)
- Philipp Hartrampf
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Rudolf Werner
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Andreas Buck
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Deutschland
| |
Collapse
|
24
|
Eilsberger F, Kreissl MC, Luster M, Pfestroff A. [Therapy concepts for thyroid carcinoma]. Nuklearmedizin 2022; 61:223-230. [PMID: 34644802 DOI: 10.1055/a-1650-9762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Theranostics via the sodium iodide symporter (NIS) offer a unique option in differentiated thyroid carcinoma. The diagnostic and therapeutic nuclides have similar uptake and kinetics, making the NIS the most important theranostic target in this disease. Radioiodine refractory thyroid carcinomas (RRTC) are characterised by reduced/absent NIS expression, thus eliminating this structure as a theranostic target. Also due to limited therapeutic options, there are approaches to generate new theranostic targets in RRTC, via the expression of somatostatin receptors (SSTR) or the prostate-specific membrane antigen (PSMA), but the current evidence does not yet allow a final evaluation of the prospects of success.
Collapse
Affiliation(s)
| | - Michael C Kreissl
- Abteilung für Nuklearmedizin, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | - Markus Luster
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| | - Andreas Pfestroff
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| |
Collapse
|
25
|
Weich A, Higuchi T, Bundschuh RA, Lapa C, Serfling SE, Rowe SP, Pomper MG, Herrmann K, Buck AK, Derlin T, Werner RA. Training on Reporting and Data System (RADS) for Somatostatin-Receptor Targeted Molecular Imaging Can Reduce the Test Anxiety of Inexperienced Readers. Mol Imaging Biol 2022; 24:631-640. [PMID: 35233654 PMCID: PMC9296379 DOI: 10.1007/s11307-022-01712-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022]
Abstract
Purpose For somatostatin receptor (SSTR)-positron emission tomography/computed tomography (PET/CT), a standardized framework termed SSTR-reporting and data system (RADS) has been proposed. We aimed to elucidate the impact of a RADS-focused training on reader’s anxiety to report on SSTR-PET/CT, the motivational beliefs in learning such a system, whether it increases reader’s confidence, and its implementation in clinical routine. Procedures A 3-day training course focusing on SSTR-RADS was conducted. Self-report questionnaires were handed out prior to the course (Pre) and thereafter (Post). The impact of the training on the following categories was evaluated: (1) test anxiety to report on SSTR-PET/CT, (2) motivational beliefs, (3) increase in reader’s confidence, and (4) clinical implementation. To assess the effect size of the course, Cohen’s d was calculated (small, d = 0.20; large effect, d = 0.80). Results Of 22 participants, Pre and Post were returned by 21/22 (95.5%). In total, 14/21 (66.7%) were considered inexperienced (IR, < 1 year experience in reading SSTR-PET/CTs) and 7/21 (33.3%) as experienced readers (ER, > 1 year). Applying SSTR-RADS, a large decrease in anxiety to report on SSTR-PET/CT was noted for IR (d = − 0.74, P = 0.02), but not for ER (d = 0.11, P = 0.78). For the other three categories motivational beliefs, reader’s confidence, and clinical implementation, agreement rates were already high prior to the training and persisted throughout the course (P ≥ 0.21). Conclusions A framework-focused reader training can reduce anxiety to report on SSTR-PET/CTs, in particular for inexperienced readers. This may allow for a more widespread adoption of this system, e.g., in multicenter trials for better intra- and interindividual comparison of scan results. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-022-01712-6.
Collapse
Affiliation(s)
- Alexander Weich
- Department of Internal Medicine II and ENETS Center of Excellence, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.,Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Steven P Rowe
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany. .,The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Ambrosini V, Zanoni L, Filice A, Lamberti G, Argalia G, Fortunati E, Campana D, Versari A, Fanti S. Radiolabeled Somatostatin Analogues for Diagnosis and Treatment of Neuroendocrine Tumors. Cancers (Basel) 2022; 14:1055. [PMID: 35205805 PMCID: PMC8870358 DOI: 10.3390/cancers14041055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare and heterogeneous tumors that require multidisciplinary discussion for optimal care. The theranostic approach (DOTA peptides labelled with 68Ga for diagnosis and with 90Y or 177Lu for therapy) plays a crucial role in the management of NENs to assess disease extension and as a criteria for peptide receptor radionuclide therapy (PRRT) eligibility based on somatostatin receptor (SSTR) expression. On the diagnostic side, [68Ga]Ga-DOTA peptides PET/CT (SSTR PET/CT) is the gold standard for imaging well-differentiated SSTR-expressing neuroendocrine tumors (NETs). [18F]FDG PET/CT is useful in higher grade NENs (NET G2 with Ki-67 > 10% and NET G3; NEC) for more accurate disease characterization and prognostication. Promising emerging radiopharmaceuticals include somatostatin analogues labelled with 18F (to overcome the limits imposed by 68Ga), and SSTR antagonists (for both diagnosis and therapy). On the therapeutic side, the evidence gathered over the past two decades indicates that PRRT is to be considered as an effective and safe treatment option for SSTR-expressing NETs, and is currently included in the therapeutic algorithms of the main scientific societies. The positioning of PRRT in the treatment sequence, as well as treatment personalization (e.g., tailored dosimetry, re-treatment, selection criteria, and combination with other alternative treatment options), is warranted in order to improve its efficacy while reducing toxicity. Although very preliminary (being mostly hampered by lack of methodological standardization, especially regarding feature selection/extraction) and often including small patient cohorts, radiomic studies in NETs are also presented. To date, the implementation of radiomics in clinical practice is still unclear. The purpose of this review is to offer an overview of radiolabeled SSTR analogues for theranostic use in NENs.
Collapse
Affiliation(s)
- Valentina Ambrosini
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Angelina Filice
- Nuclear Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (A.V.)
| | - Giuseppe Lamberti
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Argalia
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
| | - Emilia Fortunati
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (A.V.)
| | - Stefano Fanti
- Department of Experimental Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy; (V.A.); (G.L.); (G.A.); (E.F.); (D.C.); (S.F.)
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
27
|
Naik M, Al-Nahhas A, Khan SR. Treatment of Neuroendocrine Neoplasms with Radiolabeled Peptides-Where Are We Now. Cancers (Basel) 2022; 14:761. [PMID: 35159027 PMCID: PMC8833798 DOI: 10.3390/cancers14030761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been one of the most successful and exciting examples of theranostics in nuclear medicine in recent decades and is now firmly embedded in many treatment algorithms for unresectable or metastatic neuroendocrine neoplasms (NENs) worldwide. It is widely considered to be an effective treatment for well- or moderately differentiated neoplasms, which express high levels of somatostatin receptors that can be selectively targeted. This review article outlines the scientific basis of PRRT in treatment of NENs and describes its discovery dating back to the early 1990s. Early treatments utilizing Indium-111, a γ-emitter, showed promise in reduction in tumor size and improvement in biochemistry, but were also met with high radiation doses and myelotoxic and nephrotoxic effects. Subsequently, stable conjugation of DOTA-peptides with β-emitting radionuclides, such as Yttrium-90 and Lutetium-177, served as a breakthrough for PRRT and studies highlighted their potential in eliciting progression-free survival and quality of life benefits. This article will also elaborate on the key trials which paved the way for its approval and will discuss therapeutic considerations, such as patient selection and administration technique, to optimize its use.
Collapse
Affiliation(s)
- Mitesh Naik
- Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK;
| | | | - Sairah R. Khan
- Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK;
| |
Collapse
|
28
|
Eilsberger F, Kreissl MC. Nuclear medicine therapy of thyroid cancer metastases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Metser U, Eshet Y, Ortega C, Veit-Haibach P, Liu A, K S Wong R. The association between lesion tracer uptake on 68Ga-DOTATATE PET with morphological response to 177Lu-DOTATATE therapy in patients with progressive metastatic neuroendocrine tumors. Nucl Med Commun 2022; 43:73-77. [PMID: 34887370 DOI: 10.1097/mnm.0000000000001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To determine in a group of patients with progressive metastatic neuroendocrine tumors (PM-NETs) treated with 177Lu-DOTATATE whether a correlation exists between somatostatin receptor (SSTR)-2 expression in various tumors on baseline 68Ga-DOTATATE PET and their response to therapy. A secondary aim was to determine whether an association exists between tumor product of diameter (POD) and PET-derived Krenning score. MATERIALS METHODS Patients treated PM-NETs who had SSTR-2 overexpression (SSTR-RADS 5) on screening 68Ga-DOTATATE PET and CT at baseline and 3 months after therapy completion were included. Marker lesions on baseline CT were reassessed on CT after therapy using adapted Southwest Oncology Group solid tumor evaluation criteria. For each lesion, bidimensional diameter on CT and SSTR expression on PET (SSTR-RADS uptake score & PET-derived Krenning score) were recorded. Logistic regression models fitted through generalized estimating equations were used to assess for an association between SSTR expression and response to therapy, or lesion's POD. RESULTS Forty-one patients with SSTR-RADS 5 PM-NETs treated with 177Lu-DOTATATE were included. There were 135 marker lesions (mean 3.2 lesions/patient) with Krenning score of 4 (n = 74), 3 (n = 44) or 2 (n = 17). There was no association found between SSTR-2 expression, as determined by SSTR-RADS uptake score or PET-derived Krenning score, and POD or response to therapy. CONCLUSION In patients with SSTR-RADS 5 PM-NETs treated with 177Lu-DOTATATE, there was similar response to therapy for all lesions with PET-generated Krenning score ≥2. No correlation was found between lesion's POD and level of tracer uptake.
Collapse
Affiliation(s)
- Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Yael Eshet
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre
| | - Rebecca K S Wong
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network & University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Park S, Parihar AS, Bodei L, Hope TA, Mallak N, Millo C, Prasad K, Wilson D, Zukotynski K, Mittra E. Somatostatin Receptor Imaging and Theranostics: Current Practice and Future Prospects. J Nucl Med 2021; 62:1323-1329. [PMID: 34301785 PMCID: PMC9364764 DOI: 10.2967/jnumed.120.251512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
A new era of precision diagnostics and therapy for patients with neuroendocrine neoplasms began with the approval of somatostatin receptor (SSTR) radiopharmaceuticals for PET imaging followed by peptide receptor radionuclide therapy (PRRT). With the transition from SSTR-based γ-scintigraphy to PET, the higher sensitivity of the latter raised questions regarding the direct application of the planar scintigraphy-based Krenning score for PRRT eligibility. Also, to date, the role of SSTR PET in response assessment and predicting outcome remains under evaluation. In this comprehensive review article, we discuss the current role of SSTR PET in all aspects of neuroendocrine neoplasms, including its relation to conventional imaging, selection of patients for PRRT, and the current understanding of SSTR PET-based response assessment. We also provide a standardized reporting template for SSTR PET with a brief discussion.
Collapse
Affiliation(s)
- Sonya Park
- Department of Nuclear Medicine, Seoul St. Mary's Hospital, Seoul, Korea
| | - Ashwin Singh Parihar
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lisa Bodei
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Corina Millo
- Department of Nuclear Medicine, RAD&IS, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kalpna Prasad
- Department of Nuclear Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Don Wilson
- BC Cancer, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Zukotynski
- Departments of Radiology and Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Mittra
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon;
| |
Collapse
|
31
|
Abstract
Consensus guidelines acknowledge the role of gallium Ga-68 (68Ga) 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic (DOTA) somatostatin receptor (SSTR) positron emission tomography/computed tomography (PET/CT) in management of neuroendocrine tumor (NET) patients. 68Ga-DOTA-SSTR PET/CT demonstrates superior performance to conventional imaging in initial detection, staging, detection of recurrent tumor, and detection of unknown primary in known metastatic disease. 68Ga-DOTA-SSTR PET/CT is low yield for NET detection in the setting of symptoms or elevated biomarkers when conventional imaging is negative, but may still guide management. The role of 68Ga-DOTA-SSTR PET/CT is not established in monitoring response to systemic therapy but may identify progression through detection of new metastases.
Collapse
Affiliation(s)
- Janet Pollard
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Parren McNeely
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Yusuf Menda
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Koshino K, Werner RA, Pomper MG, Bundschuh RA, Toriumi F, Higuchi T, Rowe SP. Narrative review of generative adversarial networks in medical and molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:821. [PMID: 34268434 PMCID: PMC8246192 DOI: 10.21037/atm-20-6325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022]
Abstract
Recent years have witnessed a rapidly expanding use of artificial intelligence and machine learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to complement the shortcomings of a single modality that reflects certain physical measurement principles, such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such as supervised labels and annotations from a source domain to the target domain with no or insufficient knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools for medical and molecular imaging. The progress of model architectures and their applications should continue to be noteworthy.
Collapse
Affiliation(s)
- Kazuhiro Koshino
- Department of Systems and Informatics, Hokkaido Information University, Ebetsu, Japan
| | - Rudolf A. Werner
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Fujio Toriumi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital, University of Würzburg, Würzburg, Germany
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Roll W, Weckesser M, Seifert R, Bodei L, Rahbar K. Imaging and liquid biopsy in the prediction and evaluation of response to PRRT in neuroendocrine tumors: implications for patient management. Eur J Nucl Med Mol Imaging 2021; 48:4016-4027. [PMID: 33903926 PMCID: PMC8484222 DOI: 10.1007/s00259-021-05359-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Purpose The aim of this narrative review is to give an overview on current and emerging imaging methods and liquid biopsy for prediction and evaluation of response to PRRT. Current limitations and new perspectives, including artificial intelligence, are discussed. Methods A literature review of PubMed/Medline was performed with representative keywords. The search included articles published online through August 31, 2020. All searches were restricted to English language manuscripts. Results Peptide radio receptor therapy (PRRT) is a prospectively evaluated and approved therapy option in neuroendocrine tumors (NETs). Different ligands targeting the somatostatin receptor (SSTR) are used as theranostic pairs for imaging NET and for PRRT. Response assessment in prospective trials often relies on the morphological RECIST 1.1 criteria, based on lesion size in CT or MRI. The role of SSTR-PET and quantitative uptake parameters and volumetric data is still not defined. Monoanalyte tumor marker chromogranin A has a limited value for response assessment after PRRT. New emerging liquid biopsy techniques are offering prediction of response to PRRT and prognostic value. Conclusions New response criteria for NET patients undergoing PRRT will comprise multiparametric hybrid imaging and blood-based multianalyte markers. This represents tumor biology and heterogeneity.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,West German Cancer Center, Muenster and Essen, Essen, Germany
| | - Matthias Weckesser
- Department of Nuclear Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,West German Cancer Center, Muenster and Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,West German Cancer Center, Muenster and Essen, Essen, Germany.,Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lisa Bodei
- Department of Nuclear Medicine, Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany. .,West German Cancer Center, Muenster and Essen, Essen, Germany.
| |
Collapse
|
34
|
Rowe SP, Sadaghiani MS, Werner RA, Higuchi T, Derlin T, Solnes LB, Pomper MG. Prostate Cancer Theranostics. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Liberini V, Huellner MW, Grimaldi S, Finessi M, Thuillier P, Muni A, Pellerito RE, Papotti MG, Piovesan A, Arvat E, Deandreis D. The Challenge of Evaluating Response to Peptide Receptor Radionuclide Therapy in Gastroenteropancreatic Neuroendocrine Tumors: The Present and the Future. Diagnostics (Basel) 2020; 10:E1083. [PMID: 33322819 PMCID: PMC7763988 DOI: 10.3390/diagnostics10121083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The NETTER-1 study has proven peptide receptor radionuclide therapy (PRRT) to be one of the most effective therapeutic options for metastatic neuroendocrine tumors (NETs), improving progression-free survival and overall survival. However, PRRT response assessment is challenging and no consensus on methods and timing has yet been reached among experts in the field. This issue is owed to the suboptimal sensitivity and specificity of clinical biomarkers, limitations of morphological response criteria in slowly growing tumors and necrotic changes after therapy, a lack of standardized parameters and timing of functional imaging and the heterogeneity of PRRT protocols in the literature. The aim of this article is to review the most relevant current approaches for PRRT efficacy prediction and response assessment criteria in order to provide an overview of suitable tools for safe and efficacious PRRT.
Collapse
Affiliation(s)
- Virginia Liberini
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Serena Grimaldi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| | - Monica Finessi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| | - Philippe Thuillier
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
- Department of Endocrinology, University Hospital of Brest, 29200 Brest, France
| | - Alfredo Muni
- Department of Nuclear Medicine, S.S. Biagio e Antonio e C. Arrigo Hospital, 15121 Alessandria, Italy;
| | | | - Mauro G. Papotti
- Pathology Unit, City of Health and Science University Hospital, 10126 Turin, Italy;
- Department of Oncology, University of Turin at Molinette Hospital, 10126 Turin, Italy
| | - Alessandro Piovesan
- Department of Endocrinology, A. O. U. Città della Salute della Scienza of Turin, 10126 Turin, Italy;
| | - Emanuela Arvat
- Oncological Endocrinology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Désirée Deandreis
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.G.); (M.F.); (P.T.); (D.D.)
| |
Collapse
|
36
|
Abstract
CLINICAL/METHODICAL ISSUE Conventional imaging tests like computed tomography (CT) cannot visualize somatostatin receptor (SSTR) expression on the tumor cell surface. STANDARD RADIOLOGICAL METHODS For imaging of SSTR-expressing tumors conventional morphological imaging tests such as CT or magnetic resonance imaging (MRI) are employed. METHODICAL INNOVATIONS Molecular imaging of SSTR expression on the tumor cell surface, in particular by using (whole body) single photon emission computed tomography (SPECT) and positron emission tomography (PET), are considered the current standard of care. Only the use of CT enables for exact localization of putative sites of disease (hybrid imaging). PERFORMANCE Hybrid SPECT/CT and PET/CT are of utmost importance for staging and monitoring of treatment efficacy. SSTR-PET is superior to SPECT and the PET radiotracer 68Ga-DOTATATE has been approved in multiple countries. In addition, SSTR positivity revealed by SPECT or PET pave the way for a peptide receptor radionuclide therapy (PRRT). Such a theranostic approach enables for systemic or locoregional radiation with β‑emitting radionuclides, which are linked to the identical amino acid peptide used for PET or SPECT imaging. The prospective, randomized Netter‑1 trial has shown significant benefit for patients receiving PRRT. ACHIEVEMENTS A combined use of conventional and functional imaging tests is superior to conventional imaging alone and allows for identification of suitable candidates for a theranostic approach. PRACTICAL RECOMMENDATIONS In case of clinical suspicion or after having obtained histological evidence, hybrid SSTR-SPECT/CT or -PET/CT should be performed, preferably in a dedicated molecular imaging center.
Collapse
|
37
|
Werner RA, Derlin T, Rowe SP, Bundschuh L, Sheikh GT, Pomper MG, Schulz S, Higuchi T, Buck AK, Bengel FM, Bundschuh RA, Lapa C. High Interobserver Agreement for the Standardized Reporting System SSTR-RADS 1.0 on Somatostatin Receptor PET/CT. J Nucl Med 2020; 62:514-520. [PMID: 32859702 DOI: 10.2967/jnumed.120.245464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, a standardized framework system for interpreting somatostatin receptor (SSTR)-targeted PET/CT, termed the SSTR reporting and data system (RADS) 1.0, was introduced, providing reliable standards and criteria for SSTR-targeted imaging. We determined the interobserver reliability of SSTR-RADS for interpretation of 68Ga-DOTATOC PET/CT scans in a multicentric, randomized setting. Methods: A set of 51 randomized 68Ga-DOTATOC PET/CT scans was independently assessed by 4 masked readers with different levels of experience (2 experienced readers and 2 inexperienced readers) trained on the SSTR-RADS 1.0 criteria (based on a 5-point scale from 1 [definitively benign] to 5 [high certainty that neuroendocrine neoplasia is present]). For each scan, SSTR-RADS scores were assigned to a maximum of 5 target lesions (TLs). An overall scan impression based on SSTR-RADS was indicated, and interobserver agreement rates on a TL-based, on an organ-based, and on an overall SSTR-RADS score-based level were computed. The readers were also asked to decide whether peptide receptor radionuclide therapy (PRRT) should be considered on the basis of the assigned RADS scores. Results: Among the selected TLs, 153 were chosen by at least 2 readers (all 4 readers selected the same TLs in 58 of 153 [37.9%] instances). The interobserver agreement for SSTR-RADS scoring among identical TLs was good (intraclass correlation coefficient [ICC] ≥ 0.73 for 4, 3, and 2 identical TLs). For lymph node and liver lesions, excellent interobserver agreement rates were derived (ICC, 0.91 and 0.77, respectively). Moreover, the interobserver agreement for an overall scan impression based on SSTR-RADS was excellent (ICC, 0.88). The SSTR-RADS-based decision to use PRRT also demonstrated excellent agreement, with an ICC of 0.80. No significant differences between experienced and inexperienced readers for an overall scan impression and TL-based SSTR-RADS scoring were observed (P ≥ 0.18), thereby suggesting that SSTR-RADS seems to be readily applicable even for less experienced readers. Conclusion: SSTR-RADS-guided assessment demonstrated a high concordance rate, even among readers with different levels of experience, supporting the adoption of SSTR-RADS for trials, clinical routine, or outcome studies.
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lena Bundschuh
- Department of Nuclear Medicine, University Medical Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Gabriel T Sheikh
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sebastian Schulz
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; and.,Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; and
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Medical Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
38
|
Ambinder EB, Werner RA, Rowe SP. Incidental primary breast cancer detected on surveillance 68Ga-DOTATATE PET/CT in a patient with metastatic neuroendocrine carcinoma. Radiol Case Rep 2020; 15:1344-1347. [PMID: 32617128 PMCID: PMC7322489 DOI: 10.1016/j.radcr.2020.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
We present a case of a 53-year-old woman with metastatic neuroendocrine tumor, presumed primary in the small intestine with metastases to the liver and mesenteric lymph nodes. The patient was being treated with lanreotide and followed with somatostatin receptor (SSTR)-targeted 68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N', N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate (68Ga-DOTATATE) positron emission tomography – computed tomography (PET/CT). On a follow-up exam, the patient's primary and metastatic disease had improved but she had new 68Ga-DOTATATE-avid lesions in the right breast and right axilla. Subsequent breast imaging workup and biopsy demonstrated a primary breast cancer and axillary lymph node metastasis.
Collapse
Affiliation(s)
- Emily B Ambinder
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline Street, Baltimore 21287, MD, USA
| | - Rudolf A Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline Street, Baltimore 21287, MD, USA
| |
Collapse
|
39
|
Werner RA, Hänscheid H, Leal JP, Javadi MS, Higuchi T, Lodge MA, Buck AK, Pomper MG, Lapa C, Rowe SP. Impact of Tumor Burden on Quantitative [ 68Ga] DOTATOC Biodistribution. Mol Imaging Biol 2020; 21:790-798. [PMID: 30406512 DOI: 10.1007/s11307-018-1293-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE As has been previously reported, the somatostatin receptor (SSTR) imaging agent [68Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate ([68Ga]DOTATATE) demonstrates lower uptake in normal organs in patients with a high neuroendocrine tumor (NET) burden. Given the higher SSTR affinity of [68Ga] DOTATATE, we aimed to quantitatively investigate the biodistribution of [68Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ([68Ga]DOTATOC) to determine a potential correlation between uptake in normal organs and NET burden. PROCEDURES Of the 44 included patients, 36/44 (82 %) patients demonstrated suspicious radiotracer uptake on [68Ga] DOTATOC positron emission tomography (PET)/X-ray computed tomography (CT). Volumes of interest (VOIs) were defined for tumor lesions and normal organs (spleen, liver, kidneys, adrenals). Mean body weight corrected standardized uptake value (SUVmean) for normal organs was assessed and was used to calculate the corresponding mean specific activity uptake (Upt: fraction of injected activity per kg of tissue). For the entire tumor burden, SUVmean, maximum standardized uptake value (SUVmax), and the total mass (TBM) was calculated and the decay corrected tumor fractional uptake (TBU) was assessed. A Spearman's rank correlation coefficient was used to determine the correlations between normal organ uptake and tumor burden. RESULTS The median SUVmean was 18.7 for the spleen (kidneys, 9.2; adrenals, 6.8; liver, 5.6). For tumor burden, the median values were SUVmean 6.9, SUVmax 35.5, TBM 42.6 g, and TBU 1.2 %. With increasing volume of distribution, represented by lean body mass and body surface area (BSA), Upt decreased in kidneys, liver, and adrenal glands and SUVmean increased in the spleen. Correlation improved only for both kidneys and adrenals when the influence of the tumor uptake on the activity available for organ uptake was taken into account by the factor 1/(1-TBU). TBU was neither predictive for SUVmean nor for Upt in any of the organs. The distribution of organ Upt vs. BSA/(1-TBU) were not different for patients with minor TBU (<3 %) vs. higher TBU (>7 %), indicating that the correlations observed in the present study are explainable by the body size effect. High tumor mass and uptake mitigated against G1 NET. CONCLUSIONS There is no significant impact on normal organ biodistribution with increasing tumor burden on [68Ga] DOTATOC PET/CT. Potential implications include increased normal organ dose with [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide and decreased absolute lesion detection with [68Ga] DOTATOC in high NET burden.
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,European Neuroendocrine Tumor Society (ENETS) Center of Excellence, University Hospital Wuerzburg, Wuerzburg, Germany.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jeffrey P Leal
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Mehrbod S Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin A Lodge
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,European Neuroendocrine Tumor Society (ENETS) Center of Excellence, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA.,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, 601 N. Caroline St, Baltimore, MD, 21287, USA. .,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Treglia G, Goichot B, Giovanella L, Hindié E, Jha A, Pacak K, Taïeb D, Walter T, Imperiale A. Prognostic and predictive value of nuclear imaging in endocrine oncology. Endocrine 2020; 67:9-19. [PMID: 31734779 PMCID: PMC7441826 DOI: 10.1007/s12020-019-02131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
In the last few years, the role and use of medical technologies in (neuro)endocrine oncology has greatly evolved allowing not only important diagnostic information but also prognostic stratification in different clinical situations. The terms "prognostic" and "predictive" are commonly used to describe the relationships between biomarkers and patients' clinical outcomes but have quite different meaning. The present work discusses the prognostic and predictive value of nuclear medicine imaging. It critically reviews the clinical significance and potential impact of molecular examinations on follow-up and therapeutic strategies in patients with neuroendocrine neoplasms, thyroid tumors, and adrenal malignancies.
Collapse
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
- Health Technology Assessment Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bernard Goichot
- Endocrinology and Internal Medicine Department, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
| | - Luca Giovanella
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
- University Hospital and University of Zürich, Zürich, Switzerland
| | - Elif Hindié
- Nuclear Medicine Department, Haut-Lévêque Hospital, University Hospitals of Bordeaux, University of Bordeaux, Bordeaux, France
- LabEx TRAIL, University of Bordeaux, Bordeaux, France
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Taïeb
- Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Thomas Walter
- Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Lyon 1, Lyon, France
| | - Alessio Imperiale
- Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg University/FMTS, Strasbourg, France.
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France.
| |
Collapse
|
41
|
Exciting Opportunities in Nuclear Medicine Imaging and Therapy. J Clin Med 2019; 8:jcm8111944. [PMID: 31718092 PMCID: PMC6912644 DOI: 10.3390/jcm8111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Nuclear medicine has experienced a number of unprecedented developments in recent years. Above all, the concept of “theranostics”, the combination of a predictive biomarker with a therapeutic agent, has been a central part of this success. For example, a phase III randomized, controlled trial provided unequivocal evidence of the effectiveness of 177Lu-DOTATATE for treatment of neuroendocrine tumors, and there have been multiple reports of the benefits of prostate-specific membrane antigen targeted PET imaging and radio-ligand therapy in prostate cancer. Other new exciting theranostic applications include, among many others, C-X-C motif chemokine receptor 4, as well as cancer-associated fibroblasts. These can be specifically addressed by inhibitors of the fibroblast activation protein and represent a particularly promising target for nuclear medicine theranostics. This Special Issue presents some of the most recent advances in the field of nuclear medicine.
Collapse
|
42
|
Werner RA, Thackeray JT, Pomper MG, Bengel FM, Gorin MA, Derlin T, Rowe SP. Recent Updates on Molecular Imaging Reporting and Data Systems (MI-RADS) for Theranostic Radiotracers-Navigating Pitfalls of SSTR- and PSMA-Targeted PET/CT. J Clin Med 2019; 8:E1060. [PMID: 31331016 PMCID: PMC6678732 DOI: 10.3390/jcm8071060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The theranostic concept represents a paradigmatic example of personalized treatment. It is based on the use of radiolabeled compounds which can be applied for both diagnostic molecular imaging and subsequent treatment, using different radionuclides for labelling. Clinically relevant examples include somatostatin receptor (SSTR)-targeted imaging and therapy for the treatment of neuroendocrine tumors (NET), as well as prostate-specific membrane antigen (PSMA)-targeted imaging and therapy for the treatment of prostate cancer (PC). As such, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy using positron emission tomography (PET). While interpreting PSMA- or SSTR-targeted PET/computed tomography scans, the reader has to navigate certain pitfalls, including (I.) varying normal biodistribution between different PSMA- and SSTR-targeting PET radiotracers, (II.) varying radiotracer uptake in numerous kinds of both benign and malignant lesions, and (III.) resulting false-positive and false-negative findings. Thus, two novel reporting and data system (RADS) classifications for PSMA- and SSTR-targeted PET imaging (PSMA- and SSTR-RADS) have been recently introduced under the umbrella term molecular imaging reporting and data systems (MI-RADS). Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e., if the reader is familiar with one system, the other system can readily be applied. Learning objectives of the present case-based review are as follows: (I.) the theranostic concept for the treatment of NET and PC will be briefly introduced, (II.) the most common pitfalls on PSMA- and SSTR-targeted PET/CT will be identified, (III.) the novel framework system for theranostic radiotracers (MI-RADS) will be explained, applied to complex clinical cases and recent studies in the field will be highlighted. Finally, current treatment strategies based on MI-RADS will be proposed, which will demonstrate how such a generalizable framework system truly paves the way for clinically meaningful molecular imaging-guided treatment of either PC or NET. Thus, beyond an introduction of MI-RADS, the present review aims to provide an update of recently published studies which have further validated the concept of structured reporting systems in the field of theranostics.
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Baltimore, MD 21287, USA
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Martin G Pomper
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Baltimore, MD 21287, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Michael A Gorin
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Baltimore, MD 21287, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Steven P Rowe
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Baltimore, MD 21287, USA.
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
43
|
Paola M, Mansi L. Molecular Imaging and Theranostics in Pancreatic Neuroendocrine Tumours: From a Luminous Present to an Even Brighter Future. Curr Radiopharm 2019; 12:93-95. [DOI: 10.2174/187447101202190530074002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Luigi Mansi
- Section Health and Development, Inter-university Research Center for Sustainability (CIRPS), Napoli, Italy
| |
Collapse
|
44
|
Paola M, De Cobelli F, Picchio M. PET/MRI in Neuroendocrine Tumours: Blessings and Curses. Curr Radiopharm 2019; 12:96-97. [DOI: 10.2174/1874471012999190404151701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - F De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
45
|
Sheikhbahaei S, Werner RA, Solnes LB, Pienta KJ, Pomper MG, Gorin MA, Rowe SP. Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer: An Update on Important Pitfalls. Semin Nucl Med 2019; 49:255-270. [DOI: 10.1053/j.semnuclmed.2019.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Hope TA, Calais J, Zhang L, Dieckmann W, Millo C. 111In-Pentetreotide Scintigraphy Versus 68Ga-DOTATATE PET: Impact on Krenning Scores and Effect of Tumor Burden. J Nucl Med 2019; 60:1266-1269. [PMID: 30850506 DOI: 10.2967/jnumed.118.223016] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/07/2019] [Indexed: 01/19/2023] Open
Abstract
Eligibility for somatostatin receptor (SSTR) radionuclide therapy uses the qualitative Krenning score based on 111In-pentetreotide planar scintigraphy as was performed in the NETTER-1 trial. The purpose of this study was to determine the effect of using SSTR PET-based Krenning score in comparison to 111In-pentetreotide. Methods: This was a post hoc head-to-head comparison of 68Ga-DOTATATE-based and 111In-pentetreotide-based Krenning scores in 150 patients included in a prospective phase 2 study (NCT01967537). Patients were imaged using 68Ga-DOTATATE PET/CT, 111In-pentetreotide planar scintigraphy, and SPECT/CT within 1 wk. SSTR ligand uptake was graded using the Krenning score independently by 3 readers. Results: The detection rate of SSTR-expressing disease (Krenning scores 2-4) was 23%, 38%, and 72% with planar imaging, SPECT, and SSTR PET, respectively. The Krenning score was higher with SSTR PET (2.71 ± 1.74) than with planar imaging (0.75 ± 1.37; P < 0.001) or SPECT (1.23 ± 1.57; P < 0.001). In patients with a Krenning score of at least 3 on SSTR PET, the detection rate of planar imaging and SPECT was lower for lesions smaller than 2 cm than lesions 2 cm or larger: 15% and 24% versus 78% and 89%, respectively (P < 0.001). For lesions larger than 5 cm, Krenning scores between SSTR PET and 111In-pentetreotide were nearly equivalent. Lesion size did not have an impact on SSTR PET Krenning scores. Interreader agreement was higher for SSTR PET than for planar imaging or SPECT (0.79 vs. 0.67 and 0.50, respectively). Conclusion: SSTR PET results in higher Krenning scores than 111In-pentetreotide, particularly when lesions measured 2 cm or less. Small lesion size resulted in low Krenning scores using 111In-pentetreotide, but lesion size did not affect SSTR PET-based Krenning scores. The results of the NETTER-1 trial cannot be directly applied to patients with small lesions. Further study of peptide receptor radionuclide therapy in patients with small lesions negative on 111In-pentetreotide imaging and positive on SSTR PET is warranted.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California .,Department of Radiology, San Francisco VA Medical Center, San Francisco, California.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Li Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California; and
| | | | - Corina Millo
- Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Werner RA, Bundschuh RA, Bundschuh L, Fanti S, Javadi MS, Higuchi T, Weich A, Pienta KJ, Buck AK, Pomper MG, Gorin MA, Herrmann K, Lapa C, Rowe SP. Novel Structured Reporting Systems for Theranostic Radiotracers. J Nucl Med 2019; 60:577-584. [PMID: 30796171 DOI: 10.2967/jnumed.118.223537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Standardized reporting is more and more routinely implemented in clinical practice, and such structured reports have a major impact on a large variety of medical fields, such as laboratory medicine, pathology, and, recently, radiology. Notably, the field of nuclear medicine is constantly evolving as novel radiotracers for numerous clinical applications are developed. Thus, framework systems for standardized reporting in this field may increase clinical acceptance of new radiotracers, allow for inter- and intracenter comparisons for quality assurance, and be used in global multicenter studies to ensure comparable results and enable efficient data abstraction. In the last couple of years, several standardized framework systems for PET radiotracers with potential theranostic applications have been proposed. These include systems for prostate-specific membrane antigen-targeted PET agents to diagnose and treat prostate cancer, and systems for somatostatin receptor-targeted PET agents to diagnose and treat neuroendocrine neoplasia. In the present review, the framework systems for these 2 types of cancer will be briefly introduced, followed by an overview of their advantages and limitations. In addition, potential applications will be defined, approaches to validate such concepts will be proposed, and future perspectives will be discussed.
Collapse
Affiliation(s)
- Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,European Neuroendocrine Tumor Society Center of Excellence, NET Zentrum, University Hospital Würzburg, Würzburg, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Lena Bundschuh
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Stefano Fanti
- Nuclear Medicine Unit, University of Bologna, S. Orsola Hospital Bologna, Bologna, Italy
| | - Mehrbod S Javadi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takahiro Higuchi
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,Department of Bio Medical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Japan
| | - Alexander Weich
- European Neuroendocrine Tumor Society Center of Excellence, NET Zentrum, University Hospital Würzburg, Würzburg, Germany.,Gastroenterology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kenneth J Pienta
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andreas K Buck
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,European Neuroendocrine Tumor Society Center of Excellence, NET Zentrum, University Hospital Würzburg, Würzburg, Germany
| | - Martin G Pomper
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Gorin
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; and.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Constantin Lapa
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland .,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Rowe SP, Gorin MA, Pomper MG. Imaging of Prostate-Specific Membrane Antigen with Small-Molecule PET Radiotracers: From the Bench to Advanced Clinical Applications. Annu Rev Med 2019; 70:461-477. [DOI: 10.1146/annurev-med-062117-073027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, small-molecule inhibitors of prostate-specific membrane antigen (PSMA) labeled with radionuclides that allow for positron emission tomography (PET) imaging have been extensively studied in many clinical contexts in men with prostate cancer (PCa). The high sensitivity and specificity of these agents for identifying sites of PCa has quickly led to their widespread adoption as a de facto clinical standard of care throughout much of the world. PSMA-targeted PET radiotracers have been particularly well-studied in preoperatively staging men with high-risk PCa, evaluating biochemical recurrence following definitive therapy, and guiding metastasis-directed therapy in patients suspected of having oligorecurrent/oligometastatic disease. Furthermore, the expression of PSMA on the tumor neovasculature of many nonprostate malignancies has enabled a burgeoning subfield concentrated on delineating the potential utility of PSMA-targeted PET agents for imaging other cancers. In this review, we highlight the preclinical development of key small molecules that are now being clinically utilized for PCa imaging, discuss the roles of PSMA-targeted agents in guiding patient management, and consider the role these compounds may play in imaging nonprostate cancers.
Collapse
Affiliation(s)
- Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Michael A. Gorin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
49
|
Kazuhiro K, Werner RA, Toriumi F, Javadi MS, Pomper MG, Solnes LB, Verde F, Higuchi T, Rowe SP. Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images. ACTA ACUST UNITED AC 2018; 4:159-163. [PMID: 30588501 PMCID: PMC6299742 DOI: 10.18383/j.tom.2018.00042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)–based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40%–60%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45% and 71% as real magnetic resonance imaging images (NNRs, 24%, 40%, and 44%). In contradistinction, 44% and 70% of the real images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for “data-hungry” technologies, such as supervised machine learning approaches, in various clinical applications.
Collapse
Affiliation(s)
- Koshino Kazuhiro
- Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Japan
| | - Rudolf A Werner
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School University of Medicine, Baltimore, MD.,Department of Nuclear Medicine, University Hospital, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital, University of Würzburg, Würzburg, Germany
| | - Fujio Toriumi
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Bunkyō-ku, Japan
| | - Mehrbod S Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School University of Medicine, Baltimore, MD
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School University of Medicine, Baltimore, MD.,Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD; and.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School University of Medicine, Baltimore, MD
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School University of Medicine, Baltimore, MD
| | - Franco Verde
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School University of Medicine, Baltimore, MD
| | - Takahiro Higuchi
- Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Japan.,Department of Nuclear Medicine, University Hospital, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital, University of Würzburg, Würzburg, Germany
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School University of Medicine, Baltimore, MD.,Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD; and.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School University of Medicine, Baltimore, MD
| |
Collapse
|
50
|
Werner RA, Weich A, Kircher M, Solnes LB, Javadi MS, Higuchi T, Buck AK, Pomper MG, Rowe SP, Lapa C. The theranostic promise for Neuroendocrine Tumors in the late 2010s - Where do we stand, where do we go? Theranostics 2018; 8:6088-6100. [PMID: 30613284 PMCID: PMC6299695 DOI: 10.7150/thno.30357] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context.
Collapse
Affiliation(s)
- Rudolf A. Werner
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence (CoE), NET Zentrum, University Hospital Würzburg, Germany
| | - Alexander Weich
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence (CoE), NET Zentrum, University Hospital Würzburg, Germany
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Germany
| | - Malte Kircher
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence (CoE), NET Zentrum, University Hospital Würzburg, Germany
| | - Lilja B. Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mehrbod S. Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
- Department of Bio Medical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence (CoE), NET Zentrum, University Hospital Würzburg, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Constantin Lapa
- Department of Nuclear Medicine/Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
- European Neuroendocrine Tumor Society (ENETS) Center of Excellence (CoE), NET Zentrum, University Hospital Würzburg, Germany
| |
Collapse
|