1
|
Bugby SL, Farnworth AL, Brooks WR, Perkins AC. Seracam: characterisation of a new small field of view hybrid gamma camera for nuclear medicine. EJNMMI Phys 2024; 11:57. [PMID: 38976184 PMCID: PMC11231112 DOI: 10.1186/s40658-024-00659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Portable gamma cameras are being developed for nuclear medicine procedures such as thyroid scintigraphy. This article introduces Seracam® - a new technology that combines small field of view gamma imaging with optical imaging - and reports its performance and suitability for small organ imaging. METHODS The count rate capability, uniformity, spatial resolution, and sensitivity for 99mTc are reported for four integrated pinhole collimators of nominal sizes of 1 mm, 2 mm, 3 mm and 5 mm. Characterisation methodology is based on NEMA guidelines, with some adjustments necessitated by camera design. Two diagnostic scenarios - thyroid scintigraphy and gastric emptying - are simulated using clinically relevant activities and geometries to investigate application-specific performance. A qualitative assessment of the potential benefits and disadvantages of Seracam is also provided. RESULTS Seracam's performance across the measured characteristics is appropriate for small field of view applications in nuclear medicine. At an imaging distance of 50 mm, corresponding to a field of view of 77.6 mm × 77.6 mm, spatial resolution ranged from 4.6 mm to 26 mm and sensitivity from 3.6 cps/MBq to 52.2 cps/MBq, depending on the collimator chosen. Results from the clinical simulations were particularly promising despite the challenging scenarios investigated. The optimal collimator choice was strongly application dependent, with gastric emptying relying on the higher sensitivity of the 5 mm pinhole whereas thyroid imaging benefitted from the enhanced spatial resolution of the 1 mm pinhole. Signal to noise ratio in images was improved by pixel binning. Seracam has lower measured sensitivity when compared to a traditional large field of view gamma camera, for the simulated applications this is balanced by advantages such as high spatial resolution, portability, ease of use and real time gamma-optical image fusion and display. CONCLUSION The results show that Seracam has appropriate performance for small organ 99mTc imaging. The results also show that the performance of small field of view systems must be considered holistically and in clinically appropriate scenarios.
Collapse
Affiliation(s)
- Sarah L Bugby
- Department of Physics, Loughborough University, Loughborough, UK.
| | | | - William R Brooks
- Department of Physics, Loughborough University, Loughborough, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Elshot YS, Bruijn TVM, Ouwerkerk W, Jaspars LH, van de Wiel BA, Zupan-Kajcovski B, de Rie MA, Bekkenk MW, Balm AJM, Klop WMC. The limited value of sentinel lymph node biopsy in lentigo maligna melanoma: A nomogram based on the results of 29 years of the nationwide dutch pathology registry (PALGA). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107053. [PMID: 37778193 DOI: 10.1016/j.ejso.2023.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Lentigo maligna melanoma (LMM) predominantly presents in the head and neck of the elderly. The value of sentinel lymph node biopsy (SLNB) for LMM patients remains to be determined, as the reported average yield of positive lymph nodes is less than 10%. In this nationwide cohort study, we wanted to identify LMM patients with an increased risk of SLNB-positivity. METHODS LMM with an SLNB indication according to the 8th AJCC melanoma guidelines were retrospectively identified from the nationwide network and registry of histo- and cytopathology in the Netherlands (PALGA). A penalized (LASSO) logistic regression analysis was performed to determine the optimal combination of clinicopathological factors to predict a positive SLNB. RESULTS Between 1991 and 2020, 1989 LMM patients met our inclusion criteria. SLNB was performed in 16.7% (n = 333) and was positive in 7.5% (25/333). The false-negative rate was 21.9%. Clinically detectable regional lymph node (LN) metastases were found in 1.3% (n = 25). Clinicopathological characteristics best predictive for SLNB-positivity (Odds ratio; 95% CI) were age (0.95; 0.91-0.99), ulceration 1.59 (0.44-4.83), T4-stage (1.81; 0.43-6.2), male sex (1.97; 0.79-5.27), (lymph)angioinvasion (5.07; 0.94-23.31), and microsatellites (7.23; 1.56-32.7) (C-statistic 0.75). During follow-up, regional LN recurrences were detected in 4.2% (83/1989) of patients, of which the majority (74/83) had no evidence of regional LN metastases at baseline. CONCLUSION Our findings confirm the limited SLNB-positivity in LMM patients. Based on the identified high-risk clinicopathological features, a nomogram was developed to predict the risk of a positive SLNB.
Collapse
Affiliation(s)
- Yannick S Elshot
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands; Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands.
| | - Tristan V M Bruijn
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands; Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Wouter Ouwerkerk
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands; Amsterdam Infection & Immunity Institute, Cancer Center, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lies H Jaspars
- Department of Pathology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Bart A van de Wiel
- Department of Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands
| | - Biljana Zupan-Kajcovski
- Department of Dermatology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, the Netherlands
| | - Menno A de Rie
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam UMC, Univ. of Amsterdam, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Alfons J M Balm
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Univ. of Amsterdam, the Netherlands
| | - W Martin C Klop
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Postbus 90203, 1006 BE, Amsterdam, Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Univ. of Amsterdam, the Netherlands
| |
Collapse
|
3
|
Vreeburg MTA, Azargoshasb S, van Willigen D, Molenaar T, van Oosterom MN, Buckle T, Slof LJ, Klop M, Karakullukcu B, Donswijk M, van der Poel HG, van Leeuwen FWB, Brouwer OR, Rietbergen DDD. Comparison of two hybrid sentinel node tracers: indocyanine green (ICG)- 99mTc-nanocolloid vs. ICG- 99mTc-nanoscan from a nuclear medicine and surgical perspective. Eur J Nucl Med Mol Imaging 2023; 50:2282-2291. [PMID: 36929210 PMCID: PMC10250462 DOI: 10.1007/s00259-023-06157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Lymph node (LN) metastasis is a relevant predictor for survival in patients with a.o. penile cancer (PeCa), malignant melanoma. The sentinel node (SN) procedure comprises targeted resection of the first tumour-draining SNs. Here, the hybrid tracer indocyanine green (ICG)-99mTc-nanocolloid has been used for several years to combine optical and nuclear detection. Recently, the resource of the nanocolloid precursor stopped production and the precursor was replaced by a different but chemically comparable colloid, nanoscan. Our aim was to study the performance of ICG-99mTc-nanoscan compared to ICG-99mTc-nanocolloid from a nuclear and surgical perspective. METHODS Twenty-four patients with either PeCa or head-and-neck (H&N) melanoma and scheduled for a SN procedure were included. The initial group (n = 11) received ICG-99mTc-nanocolloid until no longer available; the second group (n = 13) received ICG-99mTc-nanoscan. Tracer uptake was assessed on lymphoscintigraphy and single-photon emission (SPECT). Intraoperatively, SNs were identified using gamma tracing and fluorescence imaging. Ex vivo (back-table) measurements were conducted to quantify the fluorescence emissions. Chemical analysis was performed to compare the ICG assembly on both precursors. RESULTS The mean tracer uptake in the SNs was similar for ICG-99mTc-nanocolloid (2.2 ± 4.3%ID) and ICG-99mTc-nanoscan (1.8 ± 2.6%ID; p = 0.68). 3 SNs (interquartile range (IQR) 3-4) were detected on lymphoscintigraphy in PeCa patients receiving ICG-99mTc-nanoscan compared to 2 SNs (IQR 2-3) in PeCa patients receiving ICG-99mTc-nanocolloid (p = 0.045), no differences were observed in H&N patients. Back-table measurements of resected SNs revealed a lower total fluorescence intensity in the ICG-99mTc-nanoscan group (24*109 arbitrary units (A.U) IQR 1.6*109-14*109 in the ICG-99mTc-nanocolloid group versus 4.6*109 A.U. IQR 2.4*109-42*109 in the ICG-99mTc-nanoscan group, p = 0.0054). This was consistent with a larger degree of "stacked" ICG observed in the nanoscan formulation. No tracer-related adverse events were reported. CONCLUSIONS Based on this retrospective analysis, we can conclude that ICG-99mTc-nanoscan has similar capacity for SN identification as ICG-99mTc-nanocolloid and can safely be implemented in SN procedures.
Collapse
Affiliation(s)
- Manon T A Vreeburg
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Samaneh Azargoshasb
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Danny van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Tom Molenaar
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
- Radiochemistry Facility, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Matthias N van Oosterom
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Tessa Buckle
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Leon J Slof
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
- Instrumentele zaken ontwikkeling, facilitair bedrijf, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin Klop
- Department of Head and Neck Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Baris Karakullukcu
- Department of Head and Neck Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maarten Donswijk
- Department of Nuclear Medicine, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Oscar R Brouwer
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Leiden, The Netherlands.
- Department of Radiology, Section Nuclear Medicine, Leiden University Medical Hospital, Leiden, The Netherlands.
| |
Collapse
|
4
|
Berehova N, van Meerbeek MP, Azargoshasb S, van Willigen DM, Slof LJ, Navaei Lavasani S, van Oosterom MN, van Leeuwen FWB, Buckle T. A Truncated 14-Amino-Acid Myelin Protein-Zero-Targeting Peptide for Fluorescence-Guided Nerve-Preserving Surgery. Biomolecules 2023; 13:942. [PMID: 37371522 DOI: 10.3390/biom13060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The occurrence of accidental nerve damage during surgery and the increasing application of image guidance during head-and-neck surgery have highlighted the need for molecular targeted nerve-sparing interventions. The implementation of such interventions relies on the availability of nerve-specific tracers. In this paper, we describe the development of a truncated peptide that has an optimized affinity for protein zero (P0), the most abundant protein in myelin. METHODS AND MATERIALS Further C- and N-terminal truncation was performed on the lead peptide Cy5-P0101-125. The resulting nine Cy5-labelled peptides were characterized based on their photophysical properties, P0 affinity, and in vitro staining. These characterizations were combined with evaluation of the crystal structure of P0, which resulted in the selection of the optimized tracer Cy5-P0112-125. A near-infrared Cy7-functionalized derivative (Cy7-P0112-125) was used to perform an initial evaluation of fluorescence-guided surgery in a porcine model. RESULTS Methodological truncation of the 26-amino-acid lead compound Cy5-P0101-125 resulted in a size reduction of 53.8% for the optimized peptide Cy5-P0112-125. The peptide design and the 1.5-fold affinity gain obtained after truncation could be linked to interactions observed in the crystal structure of the extracellular portion of P0. The near-infrared analogue Cy7-P0112-125 supported nerve illumination during fluorescence-guided surgery in the head-and-neck region in a porcine model. CONCLUSIONS Methodological truncation yielded a second-generation P0-specific peptide. Initial surgical evaluation suggests that the peptide can support molecular targeted nerve imaging.
Collapse
Affiliation(s)
- Nataliia Berehova
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Maarten P van Meerbeek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Samaneh Azargoshasb
- Design and Prototyping, Department of Medical Technology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Leon J Slof
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Design and Prototyping, Department of Medical Technology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Saaedeh Navaei Lavasani
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Head and Neck Surgery, Division of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Head and Neck Surgery, Division of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
5
|
Stathaki MI, Kapsoritakis N, Michelakis D, Anagnostopoulou E, Bourogianni O, Tsaroucha A, Papadaki E, de Bree E, Koukouraki S. The impact of sentinel lymph node mapping with hybrid single photon emission computed tomography/computed tomography in patients with melanoma. Comparison to planar radioisotopic lymphoscintigraphy. Melanoma Res 2023; 33:239-246. [PMID: 37053074 DOI: 10.1097/cmr.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We studied the diagnostic value of 16 slices of single photon emission computed tomography (SPECT)/computed tomography (CT) in the anatomical localization, image interpretation and extra-sentinel lymph nodes (SLNs) detection compared to dynamic and static planar radioisotopic lymphoscintigraphy (PLS) in patients with melanoma. Eighty-two patients with melanoma underwent dynamic PLS, static PLS and SPECT/CT. Data were obtained using a dual head SPECT/CT 16 slices γ-camera. We evaluated the number and localization of SLNs detected with each imaging method. SPECT/CT demonstrated 48 additional SLNs in comparison with PLS in 29 patients. In five truncal and seven head-neck lesions, dynamic and static PLS failed to detect the SLNs found on SPECT/CT (false negative). In one case of truncal and one case of lower limb melanoma, the foci of increased activity interpreted on PLS as possible SLNs were confirmed to be non-nodal sites of uptake on SPECT/CT (false positive). PLS underestimated the number of SLNs detected, whereas SPECT/CT revealed higher agreement compared to the respective number from histological reports. SPECT/CT showed a better prediction of the number of SLNs and higher diagnostic parameters in comparison to planar imaging. SPECT/CT is an important complementary diagnostic modality to PLS, that improves detection, preoperative evaluation, anatomical landmarks of SLNs and surgical management of patients with melanoma.
Collapse
Affiliation(s)
- Maria I Stathaki
- Department of Nuclear Medicine, University Hospital of Heraklion
| | | | | | | | - Olga Bourogianni
- Department of Nuclear Medicine, University Hospital of Heraklion
| | | | | | - Eelco de Bree
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | | |
Collapse
|
6
|
Azari F, Zhang K, Kennedy GT, Chang A, Nadeem B, Delikatny EJ, Singhal S. Precision Surgery Guided by Intraoperative Molecular Imaging. J Nucl Med 2022; 63:1620-1627. [PMID: 35953303 PMCID: PMC9635678 DOI: 10.2967/jnumed.121.263409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Intraoperative molecular imaging (IMI) has recently emerged as an important tool in the armamentarium of surgical oncologists. IMI allows real-time assessment of oncologic resection quality, margin assessment, and occult disease detection during real-time surgery. Numerous tracers have now been developed for use in IMI-guided tissue sampling. Fluorochromes localize to the tumor by taking advantage of their disorganized capillary milieu, overexpressed receptors, or upregulated enzymes. Although fluorescent tracers can suffer from issues of autofluorescence and lack of depth penetration, these challenges are being addressed through hybrid radioactive/fluorescent tracers and new tracers that fluoresce in the near-infrared (NIR-II [wavelength > 1,000 nm]) range. IMI is already being used to treat numerous cancers, with demonstrated improvement in cancer recurrence and patient outcomes without incurring significant burden on either clinicians or patients. In this comprehensive review, we discuss history, mechanism, current oncologic applications, and future directions of IMI-guided optical biopsy.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kevin Zhang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Gregory T. Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley Chang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Bilal Nadeem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| |
Collapse
|
7
|
Buckle T, van Alphen M, van Oosterom MN, van Beurden F, Heimburger N, van der Wal JE, van den Brekel M, van Leeuwen FWB, Karakullukcu B. Translation of c-Met Targeted Image-Guided Surgery Solutions in Oral Cavity Cancer-Initial Proof of Concept Data. Cancers (Basel) 2021; 13:cancers13112674. [PMID: 34071623 PMCID: PMC8198422 DOI: 10.3390/cancers13112674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Translation of tumor-specific fluorescent tracers is crucial in the realization intraoperative of tumor identification during fluorescence-guided surgery. Ex vivo assessment of surgical specimens after topical tracer application has the potential to reveal the suitability of a potential surgical target prior to in vivo use in patients. In this study, the c-Met receptor was identified as a possible candidate for fluorescence-guided surgery in oral cavity cancer. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In total, 9/10 tumors were fluorescently illuminated, while non-visualization could be linked to non-superficial tumor localization. Immunohistochemistry revealed c-Met expression in all ten specimens. Tumor assessment was improved via video representation of the tumor-to-background ratio. Abstract Intraoperative tumor identification (extension/margins/metastases) via receptor-specific targeting is one of the ultimate promises of fluorescence-guided surgery. The translation of fluorescent tracers that enable tumor visualization forms a critical component in the realization of this approach. Ex vivo assessment of surgical specimens after topical tracer application could help provide an intermediate step between preclinical evaluation and first-in-human trials. Here, the suitability of the c-Met receptor as a potential surgical target in oral cavity cancer was explored via topical ex vivo application of the fluorescent tracer EMI-137. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In-house developed image processing software allowed video-rate assessment of the tumor-to-background ratio (TBR). Fluorescence imaging results were related to standard pathological evaluation and c-MET immunohistochemistry. After incubation with EMI-137, 9/10 tumors were fluorescently illuminated. Immunohistochemistry revealed c-Met expression in all ten specimens. Non-visualization could be linked to a more deeply situated lesion. Tumor assessment was improved via video representation of the TBR (median TBR: 2.5 (range 1.8–3.1)). Ex vivo evaluation of tumor specimens suggests that c-Met is a possible candidate for fluorescence-guided surgery in oral cavity cancer.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
- Correspondence:
| | - Maarten van Alphen
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Florian van Beurden
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
| | - Nina Heimburger
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
| | - Jaqueline E. van der Wal
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands;
| | - Michiel van den Brekel
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.N.v.O.); (F.v.B.); (N.H.); (F.W.B.v.L.)
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| | - Baris Karakullukcu
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (M.v.A.); (M.v.d.B.); (B.K.)
| |
Collapse
|