1
|
Kim SM, Lee JS. A comprehensive review on Compton camera image reconstruction: from principles to AI innovations. Biomed Eng Lett 2024; 14:1175-1193. [PMID: 39465108 PMCID: PMC11502649 DOI: 10.1007/s13534-024-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024] Open
Abstract
Compton cameras have emerged as promising tools in biomedical imaging, offering sensitive gamma-ray imaging capabilities for diverse applications. This review paper comprehensively overviews the latest advancements in Compton camera image reconstruction technologies. Beginning with a discussion of the fundamental principles of Compton scattering and its relevance to gamma-ray imaging, the paper explores the key components and design considerations of Compton camera systems. We then review various image reconstruction algorithms employed in Compton camera systems, including analytical, iterative, and statistical approaches. Recent developments in machine learning-based reconstruction methods are also discussed, highlighting their potential to enhance image quality and reduce reconstruction time in biomedical applications. In particular, we focus on the challenges posed by conical back-projection in Compton camera image reconstruction, and how innovative signal processing techniques have addressed these challenges to improve image accuracy and spatial resolution. Furthermore, experimental validations of Compton camera imaging in preclinical and clinical settings, including multi-tracer and whole-gamma imaging studies are introduced. In summary, this review provides potentially useful information about the current state-of-the-art Compton camera image reconstruction technologies, offering a helpful guide for investigators new to this field.
Collapse
Affiliation(s)
- Soo Mee Kim
- Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Brightonix Imaging Inc., Seoul, Korea
| |
Collapse
|
2
|
Mairinger S, Jackwerth M, Chalampalakis Z, Rausch I, Weber M, Wölfl-Duchek M, Pracher L, Nics L, Pahnke J, Langsteger W, Hacker M, Zeitlinger M, Langer O. First-in-human evaluation of 6-bromo-7-[ 11C]methylpurine, a PET tracer for assessing the function of multidrug resistance-associated proteins in different tissues. Eur J Nucl Med Mol Imaging 2024; 51:3900-3911. [PMID: 39060376 PMCID: PMC11527933 DOI: 10.1007/s00259-024-06851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Multidrug resistance-associated protein 1 (MRP1) is a transport protein with a widespread tissue distribution, which has been implicated in the pathophysiology of Alzheimer's and chronic respiratory disease. PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) has been used to measure MRP1 function in rodents. In this study, [11C]BMP was for the first time characterised in humans to assess the function of MRP1 and other MRP subtypes in different tissues. METHODS Thirteen healthy volunteers (7 men, 6 women) underwent dynamic whole-body PET scans on a long axial field-of-view (LAFOV) PET/CT system after intravenous injection of [11C]BMP. Three subjects of each sex were scanned a second time to assess reproducibility. Volumes of interest were outlined for MRP-expressing tissues (cerebral cortex, cerebellum, choroid plexus, retina, lungs, myocardium, kidneys, and liver). From the time-activity curves, the elimination rate constant (kE, h- 1) was derived as a parameter for tissue MRP function and its test-retest variability (TRTV, %) was calculated. Radiation dosimetry was calculated using the Medical Internal Radiation Dose (MIRD) methodology. RESULTS Mean kE and corresponding TRTV values were: cerebral cortex: 0.055 ± 0.010 h- 1 (- 4 ± 24%), cerebellum: 0.033 ± 0.009 h- 1 (1 ± 39%), choroid plexus: 0.292 ± 0.059 h- 1 (0.1 ± 16%), retina: 0.234 ± 0.045 h- 1 (30 ± 38%), lungs: 0.875 ± 0.095 h- 1 (- 3 ± 11%), myocardium: 0.641 ± 0.105 h- 1 (11 ± 25%), kidneys: 1.378 ± 0.266 h- 1 (14 ± 16%), and liver: 0.685 ± 0.072 h- 1 (7 ± 9%). Significant sex differences were found for kE in the cerebellum, lungs and kidneys. Effective dose was 4.67 ± 0.18 µSv/MBq for men and 4.55 ± 0.18 µSv/MBq for women. CONCLUSION LAFOV PET/CT with [11C]BMP potentially allows for simultaneous assessment of MRP function in multiple human tissues. Mean TRTV of kE in different tissues was in an acceptable range, except for the retina. The radiation dosimetry of [11C]BMP was in the typical range of 11C-tracers. LAFOV PET/CT holds great potential to assess at a whole-body, multi-tissue level molecular targets relevant for drug disposition in humans. TRIAL REGISTRATION EudraCT 2021-006348-29. Registered 15 December 2021.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Jackwerth
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Zacharias Chalampalakis
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lena Pracher
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo, Oslo, Norway
- Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital, Oslo, Norway
- Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Werner Langsteger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Morris ED, Emvalomenos GM, Hoye J, Meikle SR. Modeling PET Data Acquired During Nonsteady Conditions: What If Brain Conditions Change During the Scan? J Nucl Med 2024:jnumed.124.267494. [PMID: 39448268 DOI: 10.2967/jnumed.124.267494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan. The end results are quantitative parameters that characterize the molecular processes. The most common kinetic modeling endpoints are estimates of volume of distribution or the binding potential of a tracer. If the steady state is violated during the scanning period, the standard kinetic models may not apply. To address this issue, time-variant kinetic models have been developed for the characterization of dynamic PET data acquired while significant changes (e.g., short-lived neurotransmitter changes) are occurring in brain processes. These models are intended to extract a transient signal from data. This work in the PET field dates back at least to the 1990s. As interest has grown in imaging nonsteady events, development and refinement of time-variant models has accelerated. These new models, which we classify as belonging to the first, second, or third generation according to their innovation, have used the latest progress in mathematics, image processing, artificial intelligence, and statistics to improve the sensitivity and performance of the earliest practical time-variant models to detect and describe nonsteady phenomena. This review provides a detailed overview of the history of time-variant models in PET. It puts key advancements in the field into historical and scientific context. The sum total of the methods is an ongoing attempt to better understand the nature and implications of neurotransmitter fluctuations and other brief neurochemical phenomena.
Collapse
Affiliation(s)
- Evan D Morris
- Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut;
- Biomedical Engineering, Yale University, New Haven, Connecticut
- Psychiatry, Yale University, New Haven, Connecticut
| | | | - Jocelyn Hoye
- Psychiatry, Yale University, New Haven, Connecticut
| | - Steven R Meikle
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; and
- Sydney Imaging Core Research Facility, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Roya M, van Snick JH, Slart RHJA, Noordzij W, Stormezand GN, Willemsen ATM, Boellaard R, Glaudemans AWJM, Tsoumpas C, van Sluis J. Clinical Performance Comparison of a Long Versus a Short Axial Field-of-View PET/CT Using EARL-Compliant Reconstructions. Mol Imaging Biol 2024; 26:780-789. [PMID: 39093483 PMCID: PMC11436434 DOI: 10.1007/s11307-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE To ensure comparable PET/CT image quality between or within centres, clinical inter-system performance comparisons following European Association of Nuclear Medicine Research Ltd. (EARL) guidelines is required. In this work the performance of the long axial field-of-view Biograph Vision Quadra is compared to its predecessor, the short axial field-of-view Biograph Vision. PROCEDURES To this aim, patients with suspected tumour lesions received a single weight-based (3 MBq/kg) 2-deoxy-2-[18F]fluoro-D-glucose injection and underwent routine clinical ( ∼ 15 min) scans on the Vision and 3-min scans on the Quadra in listmode in balanced order. Image quality (IQ), image noise (IN), and tumour demarcation (TD) were assessed visually by four nuclear medicine physicians using a 5-point Likert scale and semiquantitative analysis was performed using standardised uptake values (SUVs). Inter-reader agreement was tested using Wilcoxon's signed rank test and the SUVs were statistically compared using a paired t-test. RESULTS Twenty patients (mean age, 60 years ± 8.8 [standard deviation], 16 male) were enrolled. Inter-reader agreement ranged from good to very good for IQ and IN (0.62 ≤ W ≤ 0.81), and fair for TD (0.29 ≤ W ≤ 0.39). Furthermore, a significant difference was found for TD (p = 0.015) between the systems, showing improved TD for the Quadra. CONCLUSION This study demonstrates that the Quadra can be used in routine clinical practice with multiple PET/CT systems or in multicentre studies. This system provides comparable diagnostic image quality and semiquantitative accuracy, improved TD, and has the advantage of shorter scan durations.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Johannes H van Snick
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enchede, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Free University of Amsterdam, University Medical Centers Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
5
|
Mingels C, Nalbant H, Sari H, Godinez F, Sen F, Spencer B, Esteghamat NS, Tuscano JM, Nardo L. Long-Axial Field-of-View PET Imaging in Patients with Lymphoma: Challenges and Opportunities. PET Clin 2024; 19:495-504. [PMID: 38969563 PMCID: PMC11433941 DOI: 10.1016/j.cpet.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
[18F]fluoro-2-deoxy-d-glucose PET/computed tomography has been implemented in the management of patients with lymphoma, offering real-time metabolic information on lymphoma with the promise of more accurate staging, treatment response assessment, prognostication, and early detection of disease recurrence. The clinical management of lymphoproliferative disease has recently, rapidly evolved from initial chemotherapeutic to the use of immunotherapy, targeted agents, and to the use of chimeric antigen receptor T-cell therapies. The implementation of these new systems and imaging protocols together with new tracer development creates, in the field of lymphoproliferative disease, both opportunities and challenges that will be detailed in this comprehensive literature review.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Siemens Healthineers International AG, Zurich, Switzerland
| | - Felipe Godinez
- Department of Radiology, University of California Davis, Sacramento, CA, USA; UC Cavis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Naseem S Esteghamat
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Joseph M Tuscano
- Division of Malignant Hematology, Cellular Therapy & Transplantation, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Tang H, Wu Y, Cheng Z, Song S, Dong Q, Zhou Y, Shu Z, Hu Z, Zhu X. Assessment of image-derived input functions from small vessels for patlak parametric imaging using total-body PET/CT. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06926-0. [PMID: 39325156 DOI: 10.1007/s00259-024-06926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The image-derived input function (IDIF) from the descending aorta has demonstrated performance comparable to arterial blood sampling while avoiding its invasive nature in parametric imaging. However, in conventional PET, large vessels may not always be within the imaging field of view (FOV). This study aims to evaluate the efficacy of dynamic parametric Ki imaging using image-derived input functions (IDIFs) extracted from various arteries, facilitated by total-body PET/CT. METHOD Twenty-three participants underwent a 60-minute total-body [18F]FDG PET scan. Data from each subject were used to reconstruct both total-body PET images and short-axis field-of-view PET images at different bed positions, each with a 25 cm axial field-of-view (AFOV). Partial volume correction (PVC) was performed using the blurred Van Cittert iterative deconvolution. IDIFs extracted from the descending aorta, carotid artery, abdominal aorta, and iliac artery were employed for Patlak analysis. The resulting Ki images were compared using quantification indicators and subjective assessment. Linear regression analysis was conducted to examine the correlation of Ki values among IDIFs in normal organ and lesion regions of interest (ROIs). RESULT High similarities were observed in Ki images derived from the IDIFs from the descending aorta and other arteries, with a median structural similarity index measure (SSIM) above 0.98 and a median peak signal-to-noise ratio (PSNR) above 37dB. Linear regression analysis revealed strong correlations in Ki values (r² > 0.88) between the descending aorta and the three alternative vessels, with slopes of the linear fits close to 1. No significant difference in lesion detectability among IDIFs was found, as assessed visually and using metrics such as tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) (P < 0.05). CONCLUSION IDIFs from smaller vessels can reliably reconstruct parametric Ki images without compromising lesion detectability, providing clinically relevant information.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yang Wu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhaoting Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qingjian Dong
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yu Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhiping Shu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
7
|
Overbeck N, Andersen TL, Rodell AB, Cabello J, Birge N, Schleyer P, Conti M, Korsholm K, Fischer BM, Andersen FL, Lindberg U. Device-Less Data-Driven Cardiac and Respiratory Gating Using LAFOV PET Histo Images. Diagnostics (Basel) 2024; 14:2055. [PMID: 39335734 PMCID: PMC11431545 DOI: 10.3390/diagnostics14182055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The outstanding capabilities of modern Positron Emission Tomography (PET) to highlight small tumor lesions and provide pathological function assessment are at peril from image quality degradation caused by respiratory and cardiac motion. However, the advent of the long axial field-of-view (LAFOV) scanners with increased sensitivity, alongside the precise time-of-flight (TOF) of modern PET systems, enables the acquisition of ultrafast time resolution images, which can be used for estimating and correcting the cyclic motion. Methods: 0.25 s so-called [18F]FDG PET histo image series were generated in the scope of for detecting respiratory and cardiac frequency estimates applicable for performing device-less data-driven gated image reconstructions. The frequencies of the cardiac and respiratory motion were estimated for 18 patients using Short Time Fourier Transform (STFT) with 20 s and 30 s window segments, respectively. Results: The Fourier analysis provided time points usable as input to the gated reconstruction based on eight equally spaced time gates. The cardiac investigations showed estimates in accordance with the measured pulse oximeter references (p = 0.97) and a mean absolute difference of 0.4 ± 0.3 beats per minute (bpm). The respiratory frequencies were within the expected range of 10-20 respirations per minute (rpm) in 16 out of 18 patients. Using this setup, the analysis of three patients with visible lung tumors showed an increase in tumor SUVmax and a decrease in tumor volume compared to the non-gated reconstructed image. Conclusions: The method can provide signals that were applicable for gated reconstruction of both cardiac and respiratory motion, providing a potential increased diagnostic accuracy.
Collapse
Affiliation(s)
- Nanna Overbeck
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | | | - Jorge Cabello
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Noah Birge
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Paul Schleyer
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Kirsten Korsholm
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Das M, Dulski K, Eliyan KV, Fronczewska K, Gajos A, Kacprzak K, Kajetanowicz M, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Kobylecka M, Korcyl G, Kozik T, Krzemień W, Kubat K, Kumar D, Kunikowska J, Mączewska J, Migdał W, Moskal G, Mryka W, Niedźwiecki S, Parzych S, Del Rio EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Silarski M, Skurzok M, Tayefi F, Ardebili KT, Tanty P, Wiślicki W, Królicki L, Stępień EŁ. Positronium image of the human brain in vivo. SCIENCE ADVANCES 2024; 10:eadp2840. [PMID: 39270027 PMCID: PMC11397496 DOI: 10.1126/sciadv.adp2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Steven Bass
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | | | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Catalina Curceanu
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Manish Das
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Katarzyna Fronczewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Marcin Kajetanowicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tevfik Kaplanoglu
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Małgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Krzemień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Karol Kubat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Mączewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Wojciech Migdał
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Gabriel Moskal
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Department of Chemical Technology, Faculty of Chemistry of the Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wiktor Mryka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Elena P Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Shivani Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Keyvan T Ardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Pooja Tanty
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| |
Collapse
|
9
|
Pan L, Sachpekidis C, Hassel J, Christopoulos P, Dimitrakopoulou-Strauss A. Impact of different parametric Patlak imaging approaches and comparison with a 2-tissue compartment pharmacokinetic model with a long axial field-of-view (LAFOV) PET/CT in oncological patients. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06879-4. [PMID: 39256215 DOI: 10.1007/s00259-024-06879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024]
Abstract
AIM The recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM). METHODOLOGY 50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model. RESULTS No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively). CONCLUSIONS Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.
Collapse
Affiliation(s)
- Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany.
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| | - Jessica Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik of the University of Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69210, Heidelberg, Germany
| |
Collapse
|
10
|
Wang Q, Abdelhafez YG, Nalbant H, Spencer BA, Bayerlein R, Qi J, Cherry SR, Nardo L, Badawi RD. Refining penalty parameter selection in whole-body PET image reconstruction for lung cancer patients using the cross-validation log-likelihood method. Phys Med Biol 2024; 69:10.1088/1361-6560/ad7222. [PMID: 39168154 PMCID: PMC11500750 DOI: 10.1088/1361-6560/ad7222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Objective.Penalty parameters in penalized likelihood positron emission tomography (PET) reconstruction are typically determined empirically. The cross-validation log-likelihood (CVLL) method has been introduced to optimize these parameters by maximizing a CVLL function, which assesses the likelihood of reconstructed images using one subset of a list-mode dataset based on another subset. This study aims to validate the efficacy of the CVLL method in whole-body imaging for cancer patients using a conventional clinical PET scanner.Approach.Fifteen lung cancer patients were injected with 243.7 ± 23.8 MBq of [18F]FDG and underwent a 22 min PET scan on a Biograph mCT PET/CT scanner, starting at 60 ± 5 min post-injection. The PET list-mode data were partitioned by subsampling without replacement, with 20 minutes of data for image reconstruction using an in-house ordered subset expectation maximization algorithm and the remaining 2 minutes of data for cross-validation. Two penalty parameters, penalty strengthβand Fair penalty function parameterδ, were subjected to optimization. Whole-body images were reconstructed, and CVLL values were computed across various penalty parameter combinations. The optimal image corresponding to the maximum CVLL value was selected by a grid search for each patient.Main results.Theδvalue required to maximize the CVLL value was notably small (⩽10-6in this study). The influences of voxel size and scan duration on image optimization were investigated. A correlation analysis revealed a significant inverse relationship between optimalβand scan count level, with a correlation coefficient of -0.68 (p-value = 3.5 × 10-5). The optimal images selected by the CVLL method were compared with those chosen by two radiologists based on their diagnostic preferences. Differences were observed in the selection of optimal images.Significance.This study demonstrates the feasibility of incorporating the CVLL method into routine imaging protocols, potentially allowing for a wide range of combinations of injected radioactivity amounts and scan durations in modern PET imaging.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biomedical Engineering, University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California, Davis, California, USA
- Department of Radiotherapy and Nuclear Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Hande Nalbant
- Department of Radiology, University of California, Davis, California, USA
| | - Benjamin A Spencer
- Department of Biomedical Engineering, University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| | - Reimund Bayerlein
- Department of Biomedical Engineering, University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Simon R. Cherry
- Department of Biomedical Engineering, University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, California, USA
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| |
Collapse
|
11
|
Scott PJH. Can we use PET to quantify mu opioid receptors across the monkey brain, spinal cord and peripheral organs at the same time? Totally! Eur J Nucl Med Mol Imaging 2024; 51:3267-3272. [PMID: 38822890 DOI: 10.1007/s00259-024-06778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Affiliation(s)
- Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Lan W, Sari H, Rominger A, Fougère CL, Schmidt FP. Optimization and impact of sensitivity mode on abbreviated scan protocols with population-based input function for parametric imaging of [ 18F]-FDG for a long axial FOV PET scanner. Eur J Nucl Med Mol Imaging 2024; 51:3346-3359. [PMID: 38763962 PMCID: PMC11368996 DOI: 10.1007/s00259-024-06745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND The long axial field of view, combined with the high sensitivity of the Biograph Vision Quadra PET/CT scanner enables the precise deviation of an image derived input function (IDIF) required for parametric imaging. Traditionally, this requires an hour-long dynamic PET scan for [18F]-FDG, which can be significantly reduced by using a population-based input function (PBIF). In this study, we expand these examinations and include the scanner's ultra-high sensitivity (UHS) mode in comparison to the high sensitivity (HS) mode and evaluate the potential for further shortening of the scan time. METHODS Patlak Ki and DV estimates were determined by the indirect and direct Patlak methods using dynamic [18F]-FDG data of 6 oncological patients with 26 lesions (0-65 min p.i.). Both sensitivity modes for different number/duration of PET data frames were compared, together with the potential of using abbreviated scan durations of 20, 15 and 10 min by using a PBIF. The differences in parametric images and tumour-to-background ratio (TBR) due to the shorter scans using the PBIF method and between the sensitivity modes were assessed. RESULTS A difference of 3.4 ± 7.0% (Ki) and 1.2 ± 2.6% (DV) was found between both sensitivity modes using indirect Patlak and the full IDIF (0-65 min). For the abbreviated protocols and indirect Patlak, the UHS mode resulted in a lower bias and higher precision, e.g., 45-65 min p.i. 3.8 ± 4.4% (UHS) and 6.4 ± 8.9% (HS), allowing shorter scan protocols, e.g. 50-65 min p.i. 4.4 ± 11.2% (UHS) instead of 7.3 ± 20.0% (HS). The variation of Ki and DV estimates for both Patlak methods was comparable, e.g., UHS mode 3.8 ± 4.4% and 2.7 ± 3.4% (Ki) and 14.4 ± 2.7% and 18.1 ± 7.5% (DV) for indirect and direct Patlak, respectively. Only a minor impact of the number of Patlak frames was observed for both sensitivity modes and Patlak methods. The TBR obtained with direct Patlak and PBIF was not affected by the sensitivity mode, was higher than that derived from the SUV image (6.2 ± 3.1) and degraded from 20.2 ± 12.0 (20 min) to 10.6 ± 5.4 (15 min). Ki and DV estimate images showed good agreement (UHS mode, RC: 6.9 ± 2.3% (Ki), 0.1 ± 3.1% (DV), peak signal-to-noise ratio (PSNR): 64.5 ± 3.3 dB (Ki), 61.2 ± 10.6 dB (DV)) even for abbreviated scan protocols of 50-65 min p.i. CONCLUSIONS Both sensitivity modes provide comparable results for the full 65 min dynamic scans and abbreviated scans using the direct Patlak reconstruction method, with good Ki and DV estimates for 15 min short scans. For the indirect Patlak approach the UHS mode improved the Ki estimates for the abbreviated scans.
Collapse
Affiliation(s)
- W Lan
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - H Sari
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - A Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - F P Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany.
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
13
|
Slart RHJA, Martinez-Lucio TS, Boersma HH, Borra RH, Cornelissen B, Dierckx RAJO, Dobrolinska M, Doorduin J, Erba PA, Glaudemans AWJM, Giacobbo BL, Luurtsema G, Noordzij W, van Sluis J, Tsoumpas C, Lammertsma AA. [ 15O]H 2O PET: Potential or Essential for Molecular Imaging? Semin Nucl Med 2024; 54:761-773. [PMID: 37640631 DOI: 10.1053/j.semnuclmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice. The article highlights the potential of water PET in molecular imaging and suggests its prospective role in becoming an essential tool for the 21st century precision medicine in different domains ranging from preclinical to clinical research and practice. The recent technical advances in high-sensitivity PET imaging can play a key accelerating role in empowering this technique, though there are still several challenges to overcome.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - T Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald H Borra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Cornelissen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paola A Erba
- Department of Medicine and Surgery, University of Milan Bicocca, and Nuclear Medicine Unit ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Gavriilidis P, Koole M, Marinus A, Jansen FP, Deller TW, Mottaghy FM, Wierts R. Performance evaluation of iterative PET reconstruction with resolution recovery incorporating Gallium-68 positron range correction. Med Phys 2024; 51:5927-5942. [PMID: 38889361 DOI: 10.1002/mp.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The distance traveled by the positron before annihilation with an electron, the so-called positron range, negatively effects the positron emission tomography (PET) image quality for radionuclides emitting high-energy positrons such as Gallium-68 (68Ga). PURPOSE In this study, the effect of a tissue-independent positron range correction for Gallium-68 (68Ga-PRC) was investigated based on phantom measurements. The effect of the 68Ga-PRC was also explored in four patients. METHODS The positron range distribution profile of 68Ga in water was generated via Monte Carlo simulation. That profile was mapped to a spatially invariant 3D convolution kernel which was incorporated in the OSEM and Q.Clear reconstruction algorithms to perform the 68Ga-PRC. In addition, each reconstruction method included point spread function (PSF) modeling and time-of-flight information. For both Fluorine-18 (18F) and 68Ga, the NEMA IQ phantom was filled with a sphere-to-background ratio of 10:1 and scanned with the GE Discovery MI 5R PET/CT system. Standard non-positron range correction (PRC) reconstructions were performed for both radionuclides, while also PRC reconstructions were performed for 68Ga. Reconstructions parameters (OSEM: number of updates, Q.Clear: beta value) were adapted to achieve similar noise levels between the corresponding reconstructions. The effect of 68Ga-PRC was assessed for both OSEM and Q.Clear reconstructions and compared to non-PRC reconstructions for 68Ga and 18F in terms of image contrast, noise, recovery coefficient (RC), and spatial resolution. For the clinical validation, 68Ga-labeled prostate-specific membrane antigen (68Ga-PSMA) and 68Ga-DOTATOC PET scans were included of two patients each. For each PET scan, patients were injected with 1.5 MBq/kg of 68Ga-PSMA or 68Ga-DOTATOC and the contrast-to-noise ratio (CNR) was calculated and compared to the non-PRC reconstructions. RESULTS For OSEM reconstructions, including the 68Ga-PRC improved the RC by 9.4% (3.7%-19.3%) and spatial resolution by 21.7% (4.6 mm vs. 3.6 mm) for similar noise levels. For Q.Clear reconstructions, 68Ga-PRC modeling improved the RC by 6.7% (2.8%-10.5%) and spatial resolution by 15.3% (5.9 mm vs. 5.0 mm) while obtaining similar noise levels. In the patient data, the use of 68Ga-PRC enhanced the CNR by 13.2%. CONCLUSIONS Including 68Ga-PRC in the PET reconstruction enhanced the image quality of 68Ga PET data compared to the standard non-PRC reconstructions for similar noise levels. Limited patient results also supported this improvement.
Collapse
Affiliation(s)
- Prodromos Gavriilidis
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
- Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Anouk Marinus
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Timothy W Deller
- National Security Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
15
|
Steinberger WM, Mercolli L, Breuer J, Sari H, Parzych S, Niedzwiecki S, Lapkiewicz G, Moskal P, Stepien E, Rominger A, Shi K, Conti M. Positronium lifetime validation measurements using a long-axial field-of-view positron emission tomography scanner. EJNMMI Phys 2024; 11:76. [PMID: 39210079 PMCID: PMC11362402 DOI: 10.1186/s40658-024-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Positron emission tomography (PET) traditionally uses coincident annihilation photons emitted from a positron interacting with an electron to localize cancer within the body. The formation of positronium (Ps), a bonded electron-positron pair, has not been utilized in clinical applications of PET due to the need to detect either the emission of a prompt gamma ray or the decay of higher-order coincident events. Assessment of the lifetime of the formed Ps, however, can potentially yield additional diagnostic information of the surrounding tissue because Ps properties vary due to void size and molecular composition. To assess the feasibility of measuring Ps lifetimes with a PET scanner, experiments were performed in a Biograph Vision Quadra (Siemens Healthineers). Quadra is a long-axial field-of-view (LA-FOV) PET scanner capable of producing list-mode data from single interaction events. RESULTS Ortho-Ps (o-Ps) lifetimes were measured for quartz-glass and polycarbonate samples using a22 Na positron source. Results produced o-Ps lifetimes of 1.538 ± 0.036 ns for the quartz glass and 1.927 ± 0.042 ns for the polycarbonate. Both o-Ps lifetimes were determined using a double-exponential fit to the time-difference distribution between the emission of a prompt gamma ray and the annihilation of the correlated positron. The measured values match within a single standard deviation of previously published results. The quartz-glass samples were additional measured with82 Rb ,68 Ga and124 I to validate the lifetime using clinically available sources. A double-exponential fit was initially chosen as a similar methodology to previously published works, however, an exponentially-modified Gaussian distribution fit to each lifetime more-accurately models the data. A Bayesian method was used to estimate the variables of the fit and o-Ps lifetime results are reported using this methodology for the three clinical isotopes: 1.59 ± 0.03 ns for82 Rb , 1.58 ± 0.07 ns for68 Ga and 1.62 ± 0.01 ns for124 I . The impact of scatter and attenuation on the o-Ps lifetime was also assessed by analyzing a water-filled uniform cylinder (20 ϕ × 30 cm3 ) with an added82 Rb solution. Lifetimes were extracted for various regions of the cylinder and while there is a shape difference in the lifetime due to scatter, the extracted o-Ps lifetime of the water, 1.815 ± 0.013 ns, agrees with previously published results. CONCLUSION Overall, the methodology presented in this manuscript demonstrates the repeatability of Ps lifetime measurements with clinically available isotopes in a commercially-available LA-FOV PET scanner. This validation work lays the foundation for future in-vivo patient scans with Quadra.
Collapse
Affiliation(s)
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Hasan Sari
- Siemens Healthineers International AG, Zurich, Switzerland
| | - Szymon Parzych
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Szymon Niedzwiecki
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Gabriela Lapkiewicz
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Pawel Moskal
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Ewa Stepien
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| |
Collapse
|
16
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311027. [PMID: 39108503 PMCID: PMC11302722 DOI: 10.1101/2024.07.26.24311027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Blood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms. Our method uses high-temporal resolution dynamic imaging and kinetic modeling to jointly estimate cerebral blood flow and tracer-specific BBB transport rate from a single dynamic PET scan and measure the molecular permeability-surface area (PS) product of the radiotracer. We show our method can resolve BBB PS across three PET radiotracers with greatly differing permeabilities, measure reductions in BBB PS of 18F-fluorodeoxyglucose (FDG) in healthy aging, and demonstrate a possible brain-body association between decreased FDG BBB PS in patients with metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to efficiently study the molecular permeability of the human BBB in vivo using the large catalogue of available molecular PET tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA
| |
Collapse
|
17
|
Erasmus LT, Strange CD, Ahuja J, Agrawal R, Shroff GS, Marom EM, Truong MT. Imaging of Lung Cancer Staging: TNM 9 Updates. Semin Ultrasound CT MR 2024:S0887-2171(24)00045-3. [PMID: 39069273 DOI: 10.1053/j.sult.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Imaging plays a key role in clinical staging of lung cancer and guiding therapy. A thorough understanding of the staging system including the nomenclature and updates is necessary to tailor treatment plans and optimize patient care. The 9th edition of the Tumor, Node, Metastasis staging system for lung cancer has no changes for T classification and subdivides N2 and M1c categories. In nodal staging, N2 splits into N2a, ipsilateral mediastinal single station involvement and N2b, ipsilateral mediastinal multiple stations involvement. In the staging of multiple extrathoracic metastases, M1c splits into M1c1, multiple extrathoracic metastases in one organ system and M1c2, multiple extrathoracic metastases in multiple organ systems. Awareness of the proposed changes in TNM-9 staging classification is essential to provide methodical and accurate imaging interpretation.
Collapse
Affiliation(s)
- Lauren T Erasmus
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX
| | - Chad D Strange
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jitesh Ahuja
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rishi Agrawal
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Girish S Shroff
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Edith M Marom
- Department of Radiology, Chaim Sheba Medical Center, Tel Aviv, Israel
| | - Mylene T Truong
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
18
|
Sartin SL, Shetty DR, Strange CD, Gayer G, Ahuja J, Agrawal R, Truong MT. Pitfalls in Positron Emission Tomography/Computed Tomography in the Thorax and Abdomen. Semin Ultrasound CT MR 2024:S0887-2171(24)00052-0. [PMID: 39069275 DOI: 10.1053/j.sult.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Positron emission tomography/computed tomography (PET/CT) using [18F]-fluoro-2-deoxy-D-glucose (FDG) has become the mainstay imaging modality for evaluating oncology patients with certain cancers. The most common FDG PET/CT applications include staging/restaging, assessing response to therapy and detecting tumor recurrence. It is important to be aware of potential pitfalls and technical artifacts on PET/CT in the chest and abdomen to ensure accurate interpretation, avoid unnecessary intervention and optimize patient care.
Collapse
Affiliation(s)
- Stephen L Sartin
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dhanwin R Shetty
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad D Strange
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Gayer
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jitesh Ahuja
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rishi Agrawal
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mylene T Truong
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
19
|
Andersen TL, Andersen FL, Haddock B, Rosenbaum S, Larsson HBW, Law I, Lindberg U. Automated Quantitative Image-Derived Input Function for the Estimation of Cerebral Blood Flow Using Oxygen-15-Labelled Water on a Long-Axial Field-of-View PET/CT Scanner. Diagnostics (Basel) 2024; 14:1590. [PMID: 39125466 PMCID: PMC11311987 DOI: 10.3390/diagnostics14151590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The accurate estimation of the tracer arterial blood concentration is crucial for reliable quantitative kinetic analysis in PET. In the current work, we demonstrate the automatic extraction of an image-derived input function (IDIF) from a CT AI-based aorta segmentation subsequently resliced to a dynamic PET series acquired on a Siemens Vision Quadra long-axial field of view scanner in 10 human subjects scanned with [15O]H2O. We demonstrate that the extracted IDIF is quantitative and in excellent agreement with a delay- and dispersion-corrected sampled arterial input function (AIF). Perfusion maps in the brain are calculated and compared from the IDIF and AIF, respectively, showed a high degree of correlation. The results demonstrate the possibility of defining a quantitatively correct IDIF compared with AIFs from the new-generation high-sensitivity and high-time-resolution long-axial field-of-view PET/CT scanners.
Collapse
Affiliation(s)
- Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
| | - Sverre Rosenbaum
- Department of Neurology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark;
| | - Henrik Bo Wiberg Larsson
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2600 Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (F.L.A.); (B.H.); (H.B.W.L.); (I.L.); (U.L.)
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2600 Copenhagen, Denmark
| |
Collapse
|
20
|
Galldiks N, Lohmann P, Friedrich M, Werner JM, Stetter I, Wollring MM, Ceccon G, Stegmayr C, Krause S, Fink GR, Law I, Langen KJ, Tonn JC. PET imaging of gliomas: Status quo and quo vadis? Neuro Oncol 2024:noae078. [PMID: 38970818 DOI: 10.1093/neuonc/noae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Stetter
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael M Wollring
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Sandra Krause
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
21
|
Pan T, Luo D. Data-driven gated positron emission tomography/computed tomography for radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100601. [PMID: 39040434 PMCID: PMC11261283 DOI: 10.1016/j.phro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Software-based data-driven gated (DDG) positron emission tomography/computed tomography (PET/CT) has replaced hardware-based 4D PET/CT. The purpose of this article was to review DDG PET/CT, which could improve the accuracy of treatment response assessment, tumor motion evaluation, and target tumor contouring with whole-body (WB) PET/CT for radiotherapy (RT). Material and methods This review covered the topics of 4D PET/CT with hardware gating, advancements in PET instrumentation, DDG PET, DDG CT, and DDG PET/CT based on a systematic literature review. It included a discussion of the large axial field-of-view (AFOV) PET detector and a review of the clinical results of DDG PET and DDG PET/CT. Results DDG PET matched or outperformed 4D PET with hardware gating. DDG CT was more compatible with DDG PET than 4D CT, which required hardware gating. DDG CT could replace 4D CT for RT. DDG PET and DDG CT for DDG PET/CT can be incorporated in a WB PET/CT of less than 15 min scan time on a PET/CT scanner of at least 25 cm AFOV PET detector. Conclusions DDG PET/CT could correct the misregistration and tumor motion artifacts in a WB PET/CT and provide the quantitative PET and tumor motion information of a registered PET/CT for RT.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, United States
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, United States
| |
Collapse
|
22
|
Honoré d’Este S, Andersen FL, Schulze C, Saxtoft E, Fischer BM, Andersen KF. QUALIPAED-A retrospective quality control study evaluating pediatric long axial field-of-view low-dose FDG-PET/CT. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1398773. [PMID: 39355209 PMCID: PMC11440848 DOI: 10.3389/fnume.2024.1398773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 10/03/2024]
Abstract
Introduction Pediatric patients have an increased risk of radiation-induced malignancies due to their ongoing development and long remaining life span. Thus, optimization of PET protocols is an important task in pediatric nuclear medicine. Long axial field-of-view (LAFOV) PET/CT has shown a significant increase in sensitivity, which provides an ideal opportunity for reduction of injected tracer activity in the pediatric population. In this study we aim to evaluate the clinical performance of a 2-[18F]FDG-tracer reduction from 3 MBq/kg to 1.5 MBq/kg on the Biograph Vision Quadra LAFOV PET/CT. Materials and methods The first 50 pediatric patients referred for clinical whole-body PET/CT with 1.5 MBq/kg 2-[18F]FDG, were included. A standard pediatric protocol was applied. Five reconstructions were created with various time, filter and iteration settings. Image noise was computed as coefficient-of-variance (COV = SD/mean standardized-uptake-value) calculated from a spherical 20-50 mm (diameter) liver volume-of-interest. Sets of reconstructions were reviewed by one nuclear medicine physicians, who reported image lesions on a pre-defined list of sites. Paired comparison analysis was performed with significance at PB < 0.05 (Bonferroni corrected). Results All reconstructions, except one, achieved a COVmean (0.08-0.15) equal to or lower than current clinical acceptable values (COVref ≤ 0.15). Image noise significantly improved with increasing acquisition time, lowering iterations (i) from 6i to 4i (both with five subsets) and when applying a 2 mm Gauss filter (PB < 0.001). Significant difference in lesion detection was seen from 150s to 300s and from 150s to 600s (PB = 0.006-0.007). 99% of all lesions rated as malignant could be found on the 150s reconstruction, while 100% was found on the 300s, when compared to the 600s reconstruction. Conclusion Injected activity and scan time can be reduced to 1.5 MBq/kg 2-[18F]FDG with 5 min acquisition time on LAFOV PET/CT, while maintaining clinical performance in the pediatric population. These results can help limit radiation exposure to patients and personnel as well as shorten total scan time, which can help increase patient comfort, lessen the need for sedation and provide individually tailored scans.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eunice Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- King’s College London & Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Wu Q, Gu F, O'Suilleabhain LD, Sari H, Xue S, Shi K, Rominger A, O'Sullivan F. Mapping 18F-FDG Kinetics Together with Patient-Specific Bootstrap Assessment of Uncertainties: An Illustration with Data from a PET/CT Scanner with a Long Axial Field of View. J Nucl Med 2024; 65:971-979. [PMID: 38604759 PMCID: PMC11149602 DOI: 10.2967/jnumed.123.266686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.
Collapse
Affiliation(s)
- Qi Wu
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Fengyun Gu
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Liam D O'Suilleabhain
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; and
| | - Song Xue
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Finbarr O'Sullivan
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland;
| |
Collapse
|
24
|
Mingels C, Weissenrieder L, Zeimpekis K, Sari H, Nardo L, Caobelli F, Alberts I, Rominger A, Pyka T. FDG imaging with long-axial field-of-view PET/CT in patients with high blood glucose-a matched pair analysis. Eur J Nucl Med Mol Imaging 2024; 51:2036-2046. [PMID: 38383743 PMCID: PMC11139721 DOI: 10.1007/s00259-024-06646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE High blood glucose (hBG) in patients undergoing [18F]FDG PET/CT scans often results in rescheduling the examination, which may lead to clinical delay for the patient and decrease productivity for the department. The aim of this study was to evaluate whether long-axial field-of-view (LAFOV) PET/CT can minimize the effect of altered bio-distribution in hBG patients and is able to provide diagnostic image quality in hBG situations. MATERIALS AND METHODS Oncologic patients with elevated blood glucose (≥ 8.0 mmol/l) and normal blood glucose (< 8.0 mmol/l, nBG) levels were matched for tumor entity, gender, age, and BMI. hBG patients were further subdivided into two groups (BG 8-11 mmol/l and BG > 11 mmol/l). Tracer uptake in the liver, muscle, and tumor was evaluated. Furthermore, image quality was compared between long acquisitions (ultra-high sensitivity mode, 360 s) on a LAFOV PET/CT and routine acquisitions equivalent to a short-axial field-of-view scanner (simulated (sSAFOV), obtained with high sensitivity mode, 120 s). Tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) were used as the main image quality criteria. RESULTS Thirty-one hBG patients met the inclusion criteria and were matched with 31 nBG patients. Overall, liver uptake was significantly higher in hBG patients (SUVmean, 3.07 ± 0.41 vs. 2.37 ± 0.33; p = 0.03), and brain uptake was significantly lower (SUVmax, 7.58 ± 0.74 vs. 13.38 ± 3.94; p < 0.001), whereas muscle (shoulder/gluteal) uptake showed no statistically significant difference. Tumor uptake was lower in hBG patients, resulting in a significantly lower TBR in the hBG cohort (3.48 ± 0.74 vs. 5.29 ± 1.48, p < 0.001). CNR was higher in nBG compared to hBG patients (12.17 ± 4.86 vs. 23.31 ± 12.22, p < 0.001). However, subgroup analysis of nBG 8-11 mmol/l on sSAFOV PET/CT compared to hBG (> 11 mmol/l) patients examined with LAFOV PET/CT showed no statistical significant difference in CNR (19.84 ± 8.40 vs. 17.79 ± 9.3, p = 0.08). CONCLUSION While elevated blood glucose (> 11 mmol) negatively affected TBR and CNR in our cohort, the images from a LAFOV PET-scanner had comparable CNR to PET-images acquired from nBG patients using sSAFOV PET/CT. Therefore, we argue that oncologic patients with increased blood sugar levels might be imaged safely with LAFOV PET/CT when rescheduling is not feasible.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Luis Weissenrieder
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
25
|
Mercolli L, Bregenzer C, Diemling M, Mingels C, Rominger A, Sari H, Seibel S, Sohlberg A, Viscione M, Caobelli F. Internal dosimetry study of [ 82Rb]Cl using a long axial field-of-view PET/CT. Eur J Nucl Med Mol Imaging 2024; 51:1869-1875. [PMID: 38407598 PMCID: PMC11139737 DOI: 10.1007/s00259-024-06660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Long axial field-of-view (LAFOV) positron emission tomography (PET) systems allow to image all major organs with one bed position, which is particularly useful for acquiring whole-body dynamic data using short-lived radioisotopes like 82Rb. METHODS We determined the absorbed dose in target organs of three subjects (29, 40, and 57 years old) using two different methods, i.e., MIRD and voxel dosimetry. The subjects were injected with 407.0 to 419.61 MBq of [82Rb]Cl and were scanned dynamically for 7 min with a LAFOV PET/CT scanner. RESULTS Using the MIRD formalism and voxel dosimetry, the absorbed dose ranged from 1.84 to 2.78 μGy/MBq (1.57 to 3.92 μGy/MBq for voxel dosimetry) for the heart wall, 2.76 to 5.73 μGy/MBq (3.22 to 5.37 μGy/MBq for voxel dosimetry) for the kidneys, and 0.94 to 1.88 μGy/MBq (0.98 to 1.92 μGy/MBq for voxel dosimetry) for the lungs. The total body effective dose lied between 0.50 and 0.76 μSv/MBq. CONCLUSION Our study suggests that the radiation dose associated with [82Rb]Cl PET/CT can be assessed by means of dynamic LAFOV PET and that it is lower compared to literature values.
Collapse
Affiliation(s)
- Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Carola Bregenzer
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Sigrid Seibel
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antti Sohlberg
- Hermes Medical Solutions, Stockholm, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Päijät-Häme Central Hospital, Lahti, Finland
| | - Marco Viscione
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Zeimpekis KG, Mercolli L, Conti M, Sari H, Rominger A, Rathke H. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: image quality, tumor, liver and lung dosimetry. Eur J Nucl Med Mol Imaging 2024; 51:2100-2113. [PMID: 38347299 PMCID: PMC11139701 DOI: 10.1007/s00259-024-06650-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Evaluation of 90Y liver radioembolization post-treatment clinical data using a whole-body Biograph Vision Quadra PET/CT to investigate the potential of protocol optimization in terms of scan time and dosimetry. METHODS 17 patients with hepatocellular carcinoma with median (IQR) injected activity 2393 (1348-3298) MBq were included. Pre-treatment dosimetry plan was based on 99mTc-MAA SPECT/CT with Simplicit90Y™ and post-treatment validation with Quadra using Simplicit90Y™ and HERMIA independently. Regarding the image analysis, mean and peak SNR, the coefficient of variation (COV) and lesion-to-background ratio (LBR) were evaluated. For the post-treatment dosimetry validation, the mean tumor, whole liver and lung absorbed dose evaluation was performed using Simplicit90Y and HERMES. Images were reconstructed with 20-, 15-, 10-, 5- and 1- min sinograms with 2, 4, 6 and 8 iterations. Wilcoxon signed rank test was used to show statistical significance (p < 0.05). RESULTS There was no difference of statistical significance between 20- and 5- min reconstructed times for the peak SNR, COV and LBR. In addition, there was no difference of statistical significance between 20- and 1- min reconstructed times for all dosimetry metrics. Lung dosimetry showed consistently lower values than the expected. Tumor absorbed dose based on Simplicit90Y™ was similar to the expected while HERMES consistently underestimated significantly the measured tumor absorbed dose. Finally, there was no difference of statistical significance between expected and measured tumor, whole liver and lung dose for all reconstruction times. CONCLUSION In this study we evaluated, in terms of image quality and dosimetry, whole-body PET clinical images of patients after having been treated with 90Y microspheres radioembolization for liver cancer. Compared to the 20-min standard scan, the simulated 5-min reconstructed images provided equal image peak SNR and noise behavior, while performing also similarly for post-treatment dosimetry of tumor, whole liver and lung absorbed doses.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Maurizio Conti
- Molecular Imaging, Siemens Healthineers, Knoxville, TN, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Hendrik Rathke
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| |
Collapse
|
27
|
Sachpekidis C, Dimitrakopoulou-Strauss A. Long Axial Field-of-View (LAFOV) PET/CT in Prostate Cancer. Semin Nucl Med 2024:S0001-2998(24)00045-X. [PMID: 38825439 DOI: 10.1053/j.semnuclmed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
PSMA-targeted PET/CT is currently considered the most effective non-invasive diagnostic technique for imaging PSMA-positive lesions in prostate cancer (PC), and its introduction has significantly enhanced the role of nuclear medicine in both the diagnosis and therapy (theranostics) of this oncological entity. In line with developments in radiopharmaceuticals, significant progress has been made in the development of PET/CT systems. In particular, the advent of long axial field-of-view (LAFOV) PET/CT scanners has represented a major leap forward in molecular imaging, with early results from clinical applications of these systems showing significant improvements over previous standard axial field-of-view systems in terms of sensitivity, image quality and lesion quantification, while enabling whole-body dynamic PET imaging. In this context, the introduction of the new LAFOV scanners may further enhance the use and potential of PSMA-ligand PET/CT in the diagnosis and management of PC. The initial but steadily growing literature on the application of the new technology in the field of PSMA-ligand PET/CT has already yielded encouraging results regarding the detection of PC lesions with high sensitivity while providing the possibility of ultra-fast or ultra-low dose examinations. Moreover, whole-body dynamic PET has rendered for the first time feasible to capture the pharmacokinetics PSMA-ligands in all major organs and most tumor lesions with high temporal resolution. The main results of these studies are presented in this review.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | |
Collapse
|
28
|
Feng X, Muhashi A, Onishi Y, Ota R, Liu H. Transformer-CNN hybrid network for improving PET time of flight prediction. Phys Med Biol 2024; 69:115047. [PMID: 38749457 DOI: 10.1088/1361-6560/ad4c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Objective.In positron emission tomography (PET) reconstruction, the integration of time-of-flight (TOF) information, known as TOF-PET, has been a major research focus. Compared to traditional reconstruction methods, the introduction of TOF enhances the signal-to-noise ratio of images. Precision in TOF is measured by full width at half maximum (FWHM) and the offset from ground truth, referred to as coincidence time resolution (CTR) and bias.Approach.This study proposes a network combining transformer and convolutional neural network (CNN) to utilize TOF information from detector waveforms, using event waveform pairs as inputs. This approach integrates the global self-attention mechanism of Transformer, which focuses on temporal relationships, with the local receptive field of CNN. The combination of global and local information allows the network to assign greater weight to the rising edges of waveforms, thereby extracting valuable temporal information for precise TOF predictions. Experiments were conducted using lutetium yttrium oxyorthosilicate (LYSO) scintillators and silicon photomultiplier (SiPM) detectors. The network was trained and tested using the waveform datasets after cropping.Main results.Compared to the constant fraction discriminator (CFD), CNN, CNN with attention, long short-term memory (LSTM) and Transformer, our network achieved an average CTR of 189 ps, reducing it by 82 ps (more than 30%), 13 ps (6.4%), 12 ps (6.0%), 16 ps (7.8%) and 9 ps (4.6%), respectively. Additionally, a reduction of 10.3, 8.7, 6.7 and 4 ps in average bias was achieved compared to CNN, CNN with attention, LSTM and Transformer.Significance.This work demonstrates the potential of applying the Transformer for PET TOF estimation using real experimental data. Through the integration of both CNN and Transformer with local and global attention, it achieves optimal performance, thereby presenting a novel direction for future research in this field.
Collapse
Affiliation(s)
- Xuhui Feng
- The State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Amanjule Muhashi
- The State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuya Onishi
- The Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Ryosuke Ota
- The Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Huafeng Liu
- The State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
29
|
Smith CLC, Yaqub M, Wellenberg RHH, Knip JJ, Boellaard R, Zwezerijnen GJC. Ultra-low foetal radiation exposure in 18F-FDG PET/CT imaging with a long axial field-of-view PET/CT system. EJNMMI Phys 2024; 11:45. [PMID: 38789880 PMCID: PMC11126546 DOI: 10.1186/s40658-024-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Long axial field-of-view (LAFOV) PET/CT systems enable PET/CT scans with reduced injected activities because of improved sensitivity. With this study, we aimed to examine the foetal radiation dose from an 18F-FDG PET/CT scan on a LAFOV PET/CT system with reduced injected activity. METHODS Two pregnant women were retrospectively included and received an 18F-FDG PET/CT scan on a LAFOV PET/CT system with an intravenous bolus injection of 0.30 MBq/kg. Foetal radiation exposure from the PET was estimated using dose conversion factors from three published papers. Radiation exposure from the CT scans was estimated using CT-Expo. RESULTS Foetal radiation dose from the PET scan ranged between 0.11 and 0.44 mGy. Foetal radiation exposure from the CT scan ranged between < 0.10 - 0.90 mGy depending if the foetus was included in the field-of-view. CONCLUSION Foetal radiation dose could be reduced to < 1.5 mGy when scanning pregnant patients on a LAFOV PET/CT system. The radiation dose to the foetus was reduced significantly in our study due to the increased sensitivity of the LAFOV PET/CT system.
Collapse
Affiliation(s)
- Charlotte L C Smith
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ruud H H Wellenberg
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands
| | - Jelijn J Knip
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, 1117, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Dadgar M, Maebe J, Vandenberghe S. Evaluation of lesion contrast in the walk-through long axial FOV PET scanner simulated with XCAT anthropomorphic phantoms. EJNMMI Phys 2024; 11:44. [PMID: 38722428 PMCID: PMC11082126 DOI: 10.1186/s40658-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND This study evaluates the lesion contrast in a cost-effective long axial field of view (FOV) PET scanner, called the walk-through PET (WT-PET). The scanner consists of two flat detector panels covering the entire torso and head, scanning patients in an upright position for increased throughput. High-resolution, depth-of-interaction capable, monolithic detector technology is used to provide good spatial resolution and enable detection of smaller lesions. METHODS Monte Carlo GATE simulations are used in conjunction with XCAT anthropomorphic phantoms to evaluate lesion contrast in lung, liver and breast for various lesion diameters (10, 7 and 5 mm), activity concentration ratios (8:1, 4:1 and 2:1) and patient BMIs (18-37). Images were reconstructed iteratively with listmode maximum likelihood expectation maximization, and contrast recovery coefficients (CRCs) were obtained for the reconstructed lesions. RESULTS Results shows notable variations in contrast recovery coefficients (CRC) across different lesion sizes and organ locations within the XCAT phantoms. Specifically, our findings reveal that 10 mm lesions consistently exhibit higher CRC compared to 7 mm and 5 mm lesions, with increases of approximately 54% and 330%, respectively, across all investigated organs. Moreover, high contrast recovery is observed in most liver lesions regardless of diameter or activity ratio (average CRC = 42%), as well as in the 10 mm lesions in the lung. Notably, for the 10 mm lesions, the liver demonstrates 42% and 62% higher CRC compared to the lung and breast, respectively. This trend remains consistent across lesion sizes, with the liver consistently exhibiting higher CRC values compared to the lung and breast: 7 mm lesions show an increase of 96% and 41%, while 5 mm lesions exhibit approximately 294% and 302% higher CRC compared to the lung and breast, respectively. CONCLUSION A comparison with a conventional pixelated LSO long axial FOV PET shows similar performance, achieved at a reduced cost for the WT-PET due to a reduction in required number of detectors.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
31
|
Meng X, Kong X, Xia L, Wu R, Zhu H, Yang Z. The Role of Total-Body PET in Drug Development and Evaluation: Status and Outlook. J Nucl Med 2024; 65:46S-53S. [PMID: 38719239 DOI: 10.2967/jnumed.123.266978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body PET, an emerging technique, enables high-quality simultaneous total-body dynamic PET acquisition and accurate kinetic analysis. It has the potential to facilitate the study of multiple tracers while minimizing radiation dose and improving tracer-specific imaging. This advancement holds promise for enhancing the development and clinical evaluation of drugs, particularly radiopharmaceuticals. Multiple clinical trials are using a total-body PET scanner to explore existing and innovative radiopharmaceuticals. However, challenges persist, along with the opportunities, with regard to the use of total-body PET in drug development and evaluation. Specifically, considerations relate to the role of total-body PET in clinical pharmacologic evaluations and its integration into the theranostic paradigm. In this review, state-of-the-art total-body PET and its potential roles in pharmaceutical research are explored.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| |
Collapse
|
32
|
Sun Y, Cheng Z, Qiu J, Lu W. Performance and application of the total-body PET/CT scanner: a literature review. EJNMMI Res 2024; 14:38. [PMID: 38607510 PMCID: PMC11014840 DOI: 10.1186/s13550-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
33
|
Moradi H, Vashistha R, Ghosh S, O'Brien K, Hammond A, Rominger A, Sari H, Shi K, Vegh V, Reutens D. Automated extraction of the arterial input function from brain images for parametric PET studies. EJNMMI Res 2024; 14:33. [PMID: 38558200 PMCID: PMC11372015 DOI: 10.1186/s13550-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images. RESULTS Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07. CONCLUSIONS Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.
Collapse
Affiliation(s)
- Hamed Moradi
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Rajat Vashistha
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Soumen Ghosh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Kieran O'Brien
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Amanda Hammond
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - David Reutens
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Lee EYP, Philip Ip PC, Tse KY, Kwok ST, Chiu WK, Ho G. PET/Computed Tomography Transformation of Oncology: Ovarian Cancers. PET Clin 2024; 19:207-216. [PMID: 38177053 DOI: 10.1016/j.cpet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Over the last quarter of a century, fluorine-18-fluorodeoxyglucose (FDG) PET/computed tomography (CT) has revolutionized the diagnostic algorithm of ovarian cancer, impacting on the initial disease evaluation including staging and surgical planning, treatment response assessment and prognostication, to the most important role in detection of recurrent disease. The role of FDG PET/CT is expanding with the adoption of new therapeutic agents. Other non-FDG tracers have been explored with fibroblast activation protein inhibitor being promising. Novel tracers may provide the basis for future theragnostic work. This article will review the evolution and impact of PET/CT in ovarian cancer management.
Collapse
Affiliation(s)
- Elaine Yuen Phin Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, University of Hong Kong, Room 406, Block K, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China.
| | - Pun Ching Philip Ip
- Department of Pathology, School of Clinical Medicine, University of Hong Kong, Room 019, 7/F, Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, University of Hong Kong, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Shuk Tak Kwok
- Department of Obstetrics and Gynaecology, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Wan Kam Chiu
- Department of Obstetrics and Gynaecology, United Christian Hospital, 5/F, Block S, Kwun Tong, Kowloon, Hong Kong, China
| | - Grace Ho
- Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
35
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
36
|
Honkanen EA, Rönkä J, Pekkonen E, Aaltonen J, Koivu M, Eskola O, Eldebakey H, Volkmann J, Kaasinen V, Reich MM, Joutsa J. GPi-DBS-induced brain metabolic activation in cervical dystonia. J Neurol Neurosurg Psychiatry 2024; 95:300-308. [PMID: 37758453 DOI: 10.1136/jnnp-2023-331668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.
Collapse
Affiliation(s)
- Emma A Honkanen
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Neurology, Satasairaala Central Hospital, Pori, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jaana Rönkä
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Juho Aaltonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
| | - Maija Koivu
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Eskola
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Hazem Eldebakey
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Valtteri Kaasinen
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Martin M Reich
- Department of Neurology, University Hospital Wurzburg, Wurzburg, Germany
| | - Juho Joutsa
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
37
|
Singh MK, Agarwal KK, Vishwakarma M, Patel H. Technical NEMA NU2-2018 Performance Assessment of Time-of-Flight-Integrated Digital PET-CT System. World J Nucl Med 2024; 23:10-16. [PMID: 38595839 PMCID: PMC11001449 DOI: 10.1055/s-0044-1778709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Aim The objective of this study includes the NEMA (National Electrical Manufacturer Association) NU2-2018 performance evaluation of the uMIvista PET-CT (positron emission tomography-computed tomography) system. Methods The latest NEMA NU2-2018 guidelines have been followed for the evaluation of performance parameters of this PET-CT scanner: axial, tangential, and radial spatial resolution, sensitivity, counting losses, scatter, randomness, random and counting loss correction, image quality, time and energy resolution, image uniformity, and image registration alignment post installation of country first uMIvista PET-CT. Results The measured NEMA sensitivity of the uMIvista PET scanner was 12.053 cps/kBq. The spatial resolutions of the PET were measured as tangential, radial, and transaxial spatial resolutions at 10 mm, with 3.01 mm, 2.95 mm, and 2.93 mm, respectively; at 100 mm, with 3.17 mm, 3.42 mm, and 3.05 mm, respectively; and at 200 mm, with 3.65 mm, 4.54 mm, and 3.17 mm, respectively, at full-width half-maximum (FWHM); while at full-width tenths-maximum (FWTM), the values at 10 mm were 5.79 mm, 5.57 mm, and 5.69 mm, respectively, and at 100 mm were 5.59 mm, 5.96 mm, and 5.91 mm, respectively. The measured time-of-flight (TOF) timing resolution was 302.294 ps and the measured energy resolution was 11.76% with FWHM and FWTM. Conclusion The NEMA NU2-2018 performances of this TOF-integrated digital PET-CT system are extremely good in all parameters.
Collapse
Affiliation(s)
- Manoj Kumar Singh
- Medikabazaar, Technopolis Knowledge Park, Mumbai, Maharashtra, India
| | | | | | - Hemant Patel
- Gujarat Imaging Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
38
|
Smith CLC, Zwezerijnen GJC, den Hollander ME, Weijland J, Yaqub M, Boellaard R. Mitigating SUV uncertainties using total body PET imaging. Eur J Nucl Med Mol Imaging 2024; 51:1070-1078. [PMID: 37953391 PMCID: PMC10881693 DOI: 10.1007/s00259-023-06503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Standardised uptake values (SUV) are commonly used to quantify 18F-FDG lesion uptake. However, SUVs may suffer from several uncertainties and errors. Long-axial field-of-view (LAFOV) PET/CT systems might enable image-based quality control (QC) by deriving 18F-FDG activity and weight from total body (TB) 18F-FDG PET images. In this study, we aimed to develop these image-based QC to reduce errors and mitigate SUV uncertainties. METHODS Twenty-five out of 81 patient scans from a LAFOV PET/CT system were used to determine regression fits for deriving of image-derived activity and weight. Thereafter, the regression fits were applied to 56 independent 18F-FDG PET scans from the same scanner to determine if injected activity and weight could be obtained accurately from TB and half-body (HB) scans. Additionally, we studied the impact of image-based values on the precision of liver SUVmean and lesion SUVpeak. Finally, 20 scans were acquired from a short-axial field-of-view (SAFOV) PET/CT system to determine if the regression fits also applied to HB scans from a SAFOV system. RESULTS Both TB and HB 18F-FDG activity and weight significantly predicted reported injected activity (r = 0.999; r = 0.984) and weight (r = 0.999; r = 0.987), respectively. After applying the regression fits, 18F-FDG activity and weight were accurately derived within 4.8% and 3.2% from TB scans and within 4.9% and 3.1% from HB, respectively. Image-derived values also mitigated liver and lesion SUV variability compared with reported values. Moreover, 18F-FDG activity and weight obtained from a SAFOV scanner were derived within 6.7% and 4.5%, respectively. CONCLUSION 18F-FDG activity and weight can be derived accurately from TB and HB scans, and image-derived values improved SUV precision and corrected for lesion SUV errors. Therefore, image-derived values should be included as QC to generate a more reliable and reproducible quantitative uptake measurement.
Collapse
Affiliation(s)
- Charlotte L C Smith
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Marijke E den Hollander
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands
| | - Jolijn Weijland
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Wang F, Kao CM, Zhang X, Liu L, Hua Y, Kim H, Choong WS, Xie Q. DOI- and TOF-capable PET array detector using double-ended light readout and stripline-based row and column electronic readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:269-276. [PMID: 38654812 PMCID: PMC11034922 DOI: 10.1109/trpms.2024.3360942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm3 lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.
Collapse
Affiliation(s)
- Fei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiaoyu Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Linfeng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Heejong Kim
- The University of Chicago, Chicago, Illinois, USA
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qingguo Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Mingels C, Caobelli F, Alavi A, Sachpekidis C, Wang M, Nalbant H, Pantel AR, Shi H, Rominger A, Nardo L. Total-body PET/CT or LAFOV PET/CT? Axial field-of-view clinical classification. Eur J Nucl Med Mol Imaging 2024; 51:951-953. [PMID: 38040932 DOI: 10.1007/s00259-023-06534-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Centre, Heidelberg, Germany
| | - Meiyun Wang
- Medical Imaging Institute, Henan Provincial People's Hospital & People's Hospital of Zhengzhou, Zhengzhou, China
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
41
|
Bayerlein R, Spencer BA, Leung EK, Omidvari N, Abdelhafez YG, Wang Q, Nardo L, Cherry SR, Badawi RD. Development of a Monte Carlo-based scatter correction method for total-body PET using the uEXPLORER PET/CT scanner. Phys Med Biol 2024; 69:045033. [PMID: 38266297 DOI: 10.1088/1361-6560/ad2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.This study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Approach.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response. First image evaluations were derived from phantom data spanning the entire axial FOV along with image data from a human subject with a large body mass index. Data was evaluated based on qualitative inspections, and contrast recovery, background variability, residual scatter removal from cold regions, biases and axial uniformity were quantified and compared to non-scatter-corrected images.Main results.All reconstructed images demonstrated qualitative and quantitative improvements compared to non-scatter-corrected images: contrast recovery coefficients improved by up to 17.2% and background variability was reduced by up to 34.3%, and the residual lung error was between 1.26% and 2.08%. Low biases throughout the axial FOV indicate high quantitative accuracy and axial uniformity of the corrections. Up to 99% of residual activity in cold areas in the human subject was removed, and the reliability of the method was demonstrated in challenging body regions like in the proximity of a highly attenuating knee prosthesis.Significance.The MC SC method employed was demonstrated to be accurate and robust in TB-PET. The results of this study can serve as a benchmark for optimizing the quantitative performance of future SC techniques.
Collapse
Affiliation(s)
- Reimund Bayerlein
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Benjamin A Spencer
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | | | - Negar Omidvari
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Yasser G Abdelhafez
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Qian Wang
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Lorenzo Nardo
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Simon R Cherry
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Ramsey D Badawi
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| |
Collapse
|
42
|
Peña-Acosta MM, Gallardo S, Lorduy-Alós M, Verdú G. Application of NEMA protocols to verify GATE models based on the Digital Biograph Vision and the Biograph Vision Quadra scanners. Z Med Phys 2024:S0939-3889(24)00005-9. [PMID: 38341373 DOI: 10.1016/j.zemedi.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE The Monte Carlo method is an effective tool to simulate and verify PET systems. Furthermore, it can help in the design and optimization of new medical imaging devices and algorithms. In this framework, the goal of this work is to verify the GATE toolkit performance when applied to simulate two Siemens Healthineers PET scanners: a standard axial field-of-view Biograph Vision scanner and the new long axial field-of-view Biograph Vision Quadra scanner. METHODS The simulation toolkit GATE is based on GEANT4, comprising its main functionalities and a set of domain-specific features in the field of medical physics. To accomplish our purpose, the guidelines described in the NEMA NU 2-2018 protocol are reproduced. Then the simulated results are compared to experimental data available in the literature for both PET scanners. The assessment of the models includes different studies of sensitivity, count rate performances, spatial resolution and image quality. These tests are intended to evaluate the image quality of PET devices. RESULTS In the spatial resolution test, relative errors lower than 8% are obtained between the experiments and GATE models. The sensitivity is 17.2 cps/kBq (Vision) and 175.9 cps/kBq (Quadra), representing relative differences with the experiment of 6% and 0.3%, respectively. Deviations from peak NECR are less than 9%. In the Image Quality test, the contrast recovery coefficient for hot spheres, with 8 iterations and 5 subsets, ranges between 57-83% for Vision and 54-86% for Quadra. These values represent a maximum deviation between the simulations and the experiments of 10% for the Quadra scanner. In the case of the Vision scanner, the highest difference is observed for the 10 mm sphere (∼38%) due to the higher contrast recovery of the experiment caused by the Gibbs artifact from the use of PSF reconstruction. CONCLUSIONS The results of the simulations have provided evidence of a good agreement between the experimental data and the results obtained with GATE. Thus, this work supports the capability of this MC toolkit to accurately simulate the models of the Vision and Quadra scanners. This study has laid the basis for further research in this field and has identified several areas that could be explored.
Collapse
Affiliation(s)
- Miriam Magela Peña-Acosta
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental. Universitat Politècnica de València, Camí de Vera(s/n), 46022 València, Spain
| | - Sergio Gallardo
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental. Universitat Politècnica de València, Camí de Vera(s/n), 46022 València, Spain.
| | - María Lorduy-Alós
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental. Universitat Politècnica de València, Camí de Vera(s/n), 46022 València, Spain
| | - Gumersindo Verdú
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental. Universitat Politècnica de València, Camí de Vera(s/n), 46022 València, Spain
| |
Collapse
|
43
|
Yu X, Xu L, Huang G, Liu J, Chen R, Chen Y. The image quality and feasibility of solitary delayed [ 68 Ga]Ga-PSMA-11 PET/CT using long field-of-view scanning in patients with prostate cancer. EJNMMI Res 2024; 14:14. [PMID: 38319452 PMCID: PMC10847078 DOI: 10.1186/s13550-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated that delayed [68 Ga]Ga-PSMA PET/CT imaging improves lesion detection compared to early [68 Ga]Ga-PSMA PET/CT in patients with prostate cancer. However, the sole use of delayed [68 Ga]Ga-PSMA PET/CT has been limited due to the insufficient number of photons obtained with standard PET/CT scanners. The combination of early and delayed [68 Ga]Ga-PSMA standard PET/CT may be considered, and it is challenging to incorporate into a high-demand clinical setting. Long field-of-view (LFOV) PET/CT scanners have higher sensitivity compared to standard PET/CT. However, it remains unknown whether the image quality of solitary delayed [68 Ga]Ga-PSMA LFOV PET/CT imaging is adequate to satisfy clinical diagnostic requirements. Therefore, the purpose of this study was to evaluate the image quality of delayed [68 Ga]Ga-PSMA LFOV PET/CT and examine the feasibility of utilizing delayed [68 Ga]Ga-PSMA LFOV PET/CT imaging alone in patients with prostate cancer. METHODS The study sample consisted of 56 prostate cancer patients who underwent [68 Ga]Ga-PSMA-11 LFOV PET/CT scanning between December 2020 and July 2021. All patients were subjected to early LFOV PET/CT imaging at 1-h post-injection as well as delayed LFOV PET/CT imaging at 3-h post-injection using [68 Ga]Ga-PSMA-11. The image quality and diagnostic efficiency of solitary delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT imaging was analyzed. RESULTS The results showed that delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT yielded satisfactory image quality that fulfilled clinical diagnostic benchmarks. Compared to early imaging, delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT demonstrated heightened lesion SUVmax values (11.0 [2.3-193.6] vs. 7.0 [2.0-124.3], P < 0.001) and superior tumor-to-background ratios (3.3 [0.5-62.2] vs. 1.7 [0.3-30.7], P < 0.001). Additionally, delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT detected supplementary lesions in 14 patients (25%) compared to early imaging, resulting in modifications to disease staging and management plans. CONCLUSIONS In summary, the findings indicate that the image quality of delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT is satisfactory for meeting clinical diagnostic prerequisites. The use of solitary delayed [68 Ga]Ga-PSMA-11 LFOV PET/CT imaging in prostate cancer simplifies the examination protocol and improves patient compliance, compared to [68 Ga]Ga-PSMA-11 standard PET/CT which necessitates both early and delayed imaging.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Lian Xu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
44
|
Larsson HBW, Law I, Andersen TL, Andersen FL, Fischer BM, Vestergaard MB, Larsson TSW, Lindberg U. Brain perfusion estimation by Tikhonov model-free deconvolution in a long axial field of view PET/CT scanner exploring five different PET tracers. Eur J Nucl Med Mol Imaging 2024; 51:707-720. [PMID: 37843600 PMCID: PMC10796558 DOI: 10.1007/s00259-023-06469-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE New total-body PET scanners with a long axial field of view (LAFOV) allow for higher temporal resolution due to higher sensitivity, which facilitates perfusion estimation by model-free deconvolution. Fundamental tracer kinetic theory predicts that perfusion can be estimated for all tracers despite their different fates given sufficiently high temporal resolution of 1 s or better, bypassing the need for compartment modelling. The aim of this study was to investigate whether brain perfusion could be estimated using model-free Tikhonov generalized deconvolution for five different PET tracers, [15O]H2O, [11C]PIB, [18F]FE-PE2I, [18F]FDG and [18F]FET. To our knowledge, this is the first example of a general model-free approach to estimate cerebral blood flow (CBF) from PET data. METHODS Twenty-five patients underwent dynamic LAFOV PET scanning (Siemens, Quadra). PET images were reconstructed with an isotropic voxel resolution of 1.65 mm3. Time framing was 40 × 1 s during bolus passage followed by increasing framing up to 60 min. AIF was obtained from the descending aorta. Both voxel- and region-based calculations of perfusion in the thalamus were performed using the Tikhonov method. The residue impulse response function was used to estimate the extraction fraction of tracer leakage across the blood-brain barrier. RESULTS CBF ranged from 37 to 69 mL blood min-1 100 mL of tissue-1 in the thalamus. Voxelwise calculation of CBF resulted in CBF maps in the physiologically normal range. The extraction fractions of [15O]H2O, [18F]FE-PE2I, [11C]PIB, [18F]FDG and [18F]FET in the thalamus were 0.95, 0.78, 0.62, 0.19 and 0.03, respectively. CONCLUSION The high temporal resolution and sensitivity associated with LAFOV PET scanners allow for noninvasive perfusion estimation of multiple tracers. The method provides an estimation of the residue impulse response function, from which the fate of the tracer can be studied, including the extraction fraction, influx constant, volume of distribution and transit time distribution, providing detailed physiological insight into normal and pathologic tissue.
Collapse
Affiliation(s)
- Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ian Law
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Thomas L Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Barbara M Fischer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| | - Tanne S W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| |
Collapse
|
45
|
Mercolli L, Zeimpekis K, Prenosil GA, Sari H, Rathke HG, Rominger A, Shi K. Phantom study for 90Y liver radioembolization dosimetry with a long axial field-of-view PET/CT. Phys Med 2024; 118:103296. [PMID: 38281409 DOI: 10.1016/j.ejmp.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
PURPOSE The physical properties of yttrium-90 (90Y) allow for imaging with positron emission tomography/computed tomography (PET/CT). The increased sensitivity of long axial field-of-view (LAFOV) PET/CT scanners possibly allows to overcome the small branching ratio for positron production from 90Y decays and to improve for the post-treatment dosimetry of 90Y of selective internal radiation therapy. METHODS For the challenging case of an image quality body phantom, we compare a full Monte Carlo (MC) dose calculation with the results from the two commercial software packages Simplicit90Y and Hermes. The voxel dosimetry module of Hermes relies on the 90Y images taken with a LAFOV PET/CT, while the MC and Simplicit90Y dose calculations are image independent. RESULTS The resulting doses from the MC calculation and Simplicit90Y agree well within the error margins. The image-based dose calculation with Hermes, however, consistently underestimates the dose. This is due to the mismatch of the activity distribution in the PET images and the size of the volume of interest. We found that only for the smallest phantom sphere there is a statistically significant dependence of the Hermes dose on the image reconstruction parameters and scan time. CONCLUSION Our study shows that Simplicit90Y's local deposition model can provide a reliable dose estimate. On the other hand, the image based dose calculation suffers from the suboptimal reconstruction of the 90Y distribution in small structures.
Collapse
Affiliation(s)
- Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland.
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - George A Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Hendrik G Rathke
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Kunagyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| |
Collapse
|
46
|
Galve P, Arias-Valcayo F, Villa-Abaunza A, Ibáñez P, Udías JM. UMC-PET: a fast and flexible Monte Carlo PET simulator. Phys Med Biol 2024; 69:035018. [PMID: 38198727 DOI: 10.1088/1361-6560/ad1cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Objective.The GPU-based Ultra-fast Monte Carlo positron emission tomography simulator (UMC-PET) incorporates the physics of the emission, transport and detection of radiation in PET scanners. It includes positron range, non-colinearity, scatter and attenuation, as well as detector response. The objective of this work is to present and validate UMC-PET as a a multi-purpose, accurate, fast and flexible PET simulator.Approach.We compared UMC-PET against PeneloPET, a well-validated MC PET simulator, both in preclinical and clinical scenarios. Different phantoms for scatter fraction (SF) assessment following NEMA protocols were simulated in a 6R-SuperArgus and a Biograph mMR scanner, comparing energy histograms, NEMA SF, and sensitivity for different energy windows. A comparison with real data reported in the literature on the Biograph scanner is also shown.Main results.NEMA SF and sensitivity estimated by UMC-PET where within few percent of PeneloPET predictions. The discrepancies can be attributed to small differences in the physics modeling. Running in a 11 GB GeForce RTX 2080 Ti GPU, UMC-PET is ∼1500 to ∼2000 times faster than PeneloPET executing in a single core Intel(R) Xeon(R) CPU W-2155 @ 3.30 GHz.Significance.UMC-PET employs a voxelized scheme for the scanner, patient adjacent objects (such as shieldings or the patient bed), and the activity distribution. This makes UMC-PET extremely flexible. Its high simulation speed allows applications such as MC scatter correction, faster SRM estimation for complex scanners, or even MC iterative image reconstruction.
Collapse
Affiliation(s)
- Pablo Galve
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Fernando Arias-Valcayo
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Amaia Villa-Abaunza
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
47
|
Mingels C, Sari H, Gözlügöl N, Bregenzer C, Knappe L, Krieger K, Afshar-Oromieh A, Pyka T, Nardo L, Gräni C, Alberts I, Rominger A, Caobelli F. Long-axial field-of-view PET/CT for the assessment of inflammation in calcified coronary artery plaques with [ 68 Ga]Ga-DOTA-TOC. Eur J Nucl Med Mol Imaging 2024; 51:422-433. [PMID: 37740742 PMCID: PMC10774639 DOI: 10.1007/s00259-023-06435-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Inflamed, prone-to-rupture coronary plaques are an important cause of myocardial infarction and their early identification is crucial. Atherosclerotic plaques are characterized by overexpression of the type-2 somatostatin receptor (SST2) in activated macrophages. SST2 ligand imaging (e.g. with [68 Ga]Ga-DOTA-TOC) has shown promise in detecting and quantifying the inflammatory activity within atherosclerotic plaques. However, the sensitivity of standard axial field of view (SAFOV) PET scanners may be suboptimal for imaging coronary arteries. Long-axial field of view (LAFOV) PET/CT scanners may help overcome this limitation. We aim to assess the ability of [68 Ga]Ga-DOTA-TOC LAFOV-PET/CT in detecting calcified, SST2 overexpressing coronary artery plaques. METHODS In this retrospective study, 108 oncological patients underwent [68 Ga]Ga-DOTA-TOC PET/CT on a LAFOV system. [68 Ga]Ga-DOTA-TOC uptake and calcifications in the coronary arteries were evaluated visually and semi-quantitatively. Data on patients' cardiac risk factors and coronary artery calcium score were also collected. Patients were followed up for 21.5 ± 3.4 months. RESULTS A total of 66 patients (61.1%) presented with calcified coronary artery plaques. Of these, 32 patients had increased [68 Ga]Ga-DOTA-TOC uptake in at least one coronary vessel (TBR: 1.65 ± 0.53). Patients with single-vessel calcifications showed statistically significantly lower uptake (SUVmax 1.10 ± 0.28) compared to patients with two- (SUVmax 1.31 ± 0.29, p < 0.01) or three-vessel calcifications (SUVmax 1.24 ± 0.33, p < 0.01). There was a correlation between coronary artery calcium score (CACS) and [68 Ga]Ga-DOTA-TOC uptake, especially in the LAD (p = 0.02). Stroke and all-cause death occurred more frequently in patients with increased [68 Ga]Ga-DOTA-TOC uptake (15.63% vs. 0%; p:0.001 and 21.88% vs. 6.58%; p: 0.04, respectively) during the follow-up period. CONCLUSION [68 Ga]Ga-DOTA-TOC as a marker for the macrophage activity can reveal unknown cases of inflamed calcified coronary artery plaques using a LAFOV PET system. [68 Ga]Ga-DOTA-TOC uptake increased with the degree of calcification and correlated with higher risk of stroke and all-cause death. [68 Ga]Ga-DOTA-TOC LAFOV PET/CT may be useful to assess patients' cardiovascular risk.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Nasir Gözlügöl
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Carola Bregenzer
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Luisa Knappe
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Korbinian Krieger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Christoph Gräni
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 1H5, Canada
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
48
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
49
|
Montgomery ME, Andersen FL, d’Este SH, Overbeck N, Cramon PK, Law I, Fischer BM, Ladefoged CN. Attenuation Correction of Long Axial Field-of-View Positron Emission Tomography Using Synthetic Computed Tomography Derived from the Emission Data: Application to Low-Count Studies and Multiple Tracers. Diagnostics (Basel) 2023; 13:3661. [PMID: 38132245 PMCID: PMC10742516 DOI: 10.3390/diagnostics13243661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Recent advancements in PET/CT, including the emergence of long axial field-of-view (LAFOV) PET/CT scanners, have increased PET sensitivity substantially. Consequently, there has been a significant reduction in the required tracer activity, shifting the primary source of patient radiation dose exposure to the attenuation correction (AC) CT scan during PET imaging. This study proposes a parameter-transferred conditional generative adversarial network (PT-cGAN) architecture to generate synthetic CT (sCT) images from non-attenuation corrected (NAC) PET images, with separate networks for [18F]FDG and [15O]H2O tracers. The study includes a total of 1018 subjects (n = 972 [18F]FDG, n = 46 [15O]H2O). Testing was performed on the LAFOV scanner for both datasets. Qualitative analysis found no differences in image quality in 30 out of 36 cases in FDG patients, with minor insignificant differences in the remaining 6 cases. Reduced artifacts due to motion between NAC PET and CT were found. For the selected organs, a mean average error of 0.45% was found for the FDG cohort, and that of 3.12% was found for the H2O cohort. Simulated low-count images were included in testing, which demonstrated good performance down to 45 s scans. These findings show that the AC of total-body PET is feasible across tracers and in low-count studies and might reduce the artifacts due to motion and metal implants.
Collapse
Affiliation(s)
- Maria Elkjær Montgomery
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
- Department of Clinical Medicine, Copenhagen University, 2200 København, Denmark
| | - Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
| | - Nanna Overbeck
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
| | - Per Karkov Cramon
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
- Department of Clinical Medicine, Copenhagen University, 2200 København, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
- Department of Clinical Medicine, Copenhagen University, 2200 København, Denmark
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 København, Denmark; (M.E.M.); (N.O.); (P.K.C.); (I.L.); (B.M.F.); (C.N.L.)
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
50
|
Nadig V, Hornisch M, Oehm J, Herweg K, Schulz V, Gundacker S. 16-channel SiPM high-frequency readout with time-over-threshold discrimination for ultrafast time-of-flight applications. EJNMMI Phys 2023; 10:76. [PMID: 38044383 PMCID: PMC10694125 DOI: 10.1186/s40658-023-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption. To this day, there are no means to exploit the high TOF resolution of these electronics on system scale or to measure the actual timing performance limits of a full detector block. METHODS In this work, we present a 16-channel HF readout board, including leading-edge discrimination and a linearized time-over-threshold (TOT) method, which is fully compatible with a high-precision time-to-digital converters (TDCs), such as the picoTDC developed at CERN. The discrete implementation allows ideal adaptation of this readout to a broad range of detection tasks. As a first step, the functionality of the circuit has been tested using the TOFPET2 ASIC as back-end electronics to emulate the TDC, also in view of its properties as a highly scalable data acquisition solution. RESULTS The produced board is able to mitigate influences of baseline shifts in the TOFPET2 front end, which has been shown in experiments with a pulsed laser, increasing the achievable intrinsic coincidence timing resolution (CTR) of the TOFPET2 readout electronics from 70 ps (FWHM) to 62 ps (FWHM). Single-channel coincidence experiments including a [Formula: see text]-source, 2[Formula: see text]2[Formula: see text]3 mm[Formula: see text] LYSO:Ce,Ca crystals and Broadcom NUV-MT SiPMs resulted in a CTR of 118 ps (FWHM). For a 4[Formula: see text]4 matrix of 3.88[Formula: see text]3.88[Formula: see text]19 mm[Formula: see text] LYSO:Ce,Ca crystals one-to-one coupled to a 4[Formula: see text]4 array of Broadcom NUV-MT SiPMs, an average CTR of 223 ps (FWHM) was obtained. CONCLUSION The implemented 16-channel HF electronics are fully functionall and have a negligible influence on the timing performance of the back-end electronics used, here the TOFPET2 ASIC. The ongoing integration of the picoTDC with the 16-channel HF board is expected to further set the path toward sub-100 ps TOF-PET and sub-30ps TOF resolution for single-photon detection.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Hornisch
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Jakob Oehm
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Katrin Herweg
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstraße 19, 52074, Aachen, Germany
- III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Stefan Gundacker
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
| |
Collapse
|