1
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Pabari R, McCarten K, Flerlage J, Lai H, Mauz-Körholz C, Dieckmann K, Palese M, Kaste S, Castellino SM, Kelly KM, Stoevesandt D, Kurch L. Hodgkin lymphoma involving the extra-axial CNS: an AHOD1331, PHL-C1, and PHL-C2 report from the COG and EuroNet-PHL. Blood Adv 2024; 8:4856-4865. [PMID: 39058968 PMCID: PMC11416590 DOI: 10.1182/bloodadvances.2023012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
ABSTRACT Hodgkin lymphoma (HL) involving the central nervous system (CNS) is exceedingly rare. Information regarding the presentation, management, treatment, and outcome of patients with CNS HL is limited to case reports or small series. We describe 45 pediatric patients with 55 extra-axial CNS lesions at diagnosis with HL from a cohort of 4995 patients enrolled on Children's Oncology Group AHOD1331 and the European Network for Pediatric Hodgkin lymphoma C1 and C2 trials, with an overall incidence of 0.9%. Up to 82.2% of patients had a single CNS lesion in the thoracic, lumbar, or sacral spine. In the evaluated cohort, HL did not occur within the CNS parenchyma. Lesions extended into the extra-axial CNS space from adjacent soft tissue or bone and never directly infiltrated through the dura into the brain or spinal cord. Patients with CNS involvement had a twofold greater incidence of extranodal lesions than previously reported cohorts without CNS involvement. After 2 cycles of chemotherapy, 89.1% of CNS lesions demonstrated a complete metabolic response and >75% decrease in volume. Thirteen CNS lesions (23.6%) received irradiation; none were sites of disease relapse. Relapse occurred at the site of 2 lesions involving the CNS, both of which had an adequate interim response to chemotherapy. In summary, we present, to our knowledge, the largest reported cohort of systemic HL involving the CNS at diagnosis, demonstrating that these lesions originate from surrounding tissues, extend into the extra-axial CNS space, and respond similarly to other nodal and extranodal disease. The trials were registered at www.clinicaltrials.gov as #NCT02166463, #NCT00433459, and #NCT02684708.
Collapse
Affiliation(s)
- Reena Pabari
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathleen McCarten
- Department of Diagnostic Imaging, Imaging and Radiation Oncology Core Rhode Island, Lincoln, RI
| | - Jamie Flerlage
- Division of Pediatric Hematology/Oncology, Golisano Children’s Hospital, Rochester, NY
| | - Hollie Lai
- Department of Radiology, Children’s Hospital of Orange County, Orange County, CA
| | | | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Monica Palese
- Division of Pediatric Hematology/Oncology, Golisano Children’s Hospital, Rochester, NY
| | - Sue Kaste
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Kara M. Kelly
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | | | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Schäfer JF. Kommentar zu „KINDER – Lymphomstaging und -restaging mit der kontrastmittelfreien FDG-PET/MRT“. ROFO-FORTSCHR RONTG 2024; 196:422-423. [PMID: 38663378 DOI: 10.1055/a-2266-3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Affiliation(s)
- Jürgen F Schäfer
- Kinderradiologie, Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Kurch L, Kluge R. Update on FDG-PET in pediatric lymphoma. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:58-69. [PMID: 38587361 DOI: 10.23736/s1824-4785.24.03560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lymphoma represent the third most common malignant disease in childhood and adolescence. They are divided into pediatric Hodgkin lymphoma (P-HL) and pediatric non-Hodgkin lymphoma (P-NHL). In P-HL, excellent cure rates are achieved through combined modality treatment using chemotherapy and radiotherapy. For more than 20 years, FDG-PET has been an integral part of the treatment and guides its intensity through improved staging and precise assessment of chemotherapy response. In P-NHL, good cure rates are achieved with chemotherapy alone. At present FDG-PET plays only a subordinate role in the treatment setting. Its potential to contribute to treatment management is far from being fully utilised. In this article, the current status of FDG-PET in pediatric lymphoma is presented in detail. The core elements are the sections on staging and response assessment. In addition, challenges and pitfalls are discussed and future developments are outlined.
Collapse
Affiliation(s)
- Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany -
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Giraudo C, Carraro S, Zucchetta P, Cecchin D. Pediatric Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:625-636. [PMID: 37741646 DOI: 10.1016/j.mric.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
PET/MR imaging is a one-stop shop technique for pediatric diseases allowing not only an accurate clinical assessment of tumors at staging and restaging but also the diagnosis of neurologic, inflammatory, and infectious diseases in complex cases. Moreover, applying PET kinetic analyses and sequences such as diffusion-weighted imaging as well as quantitative analysis investigating the relationship between disease metabolic activity and cellularity can be applied. Complex radiomics analysis can also be performed.
Collapse
Affiliation(s)
- Chiara Giraudo
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health Department, University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Pietro Zucchetta
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Diego Cecchin
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
6
|
Jannusch K, Morawitz J, Schweiger B, Weiss D, Schimmöller L, Minko P, Herrmann K, Fendler WP, Quick HH, Antoch G, Umutlu L, Kirchner J, Bruckmann NM. [ 18F]FDG PET/MRI in children suffering from lymphoma: does MRI contrast media make a difference? Eur Radiol 2023; 33:8366-8375. [PMID: 37338559 PMCID: PMC10598113 DOI: 10.1007/s00330-023-09840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Evaluate the influence of an MRI contrast agent application on primary and follow-up staging in pediatric patients with newly diagnosed lymphoma using [18F]FDG PET/MRI to avoid adverse effects and save time and costs during examination. METHODS A total of 105 [18F]FDG PET/MRI datasets were included for data evaluation. Two different reading protocols were analyzed by two experienced readers in consensus, including for PET/MRI-1 reading protocol unenhanced T2w and/or T1w imaging, diffusion-weighted imaging (DWI), and [18F]FDG PET imaging and for PET/MRI-2 reading protocol an additional T1w post contrast imaging. Patient-based and region-based evaluation according to the revised International Pediatric Non-Hodgkin's Lymphoma (NHL) Staging System (IPNHLSS) was performed, and a modified standard of reference was applied comprising histopathology and previous and follow-up cross-sectional imaging. Differences in staging accuracy were assessed using the Wilcoxon and McNemar tests. RESULTS In patient-based analysis, PET/MRI-1 and PET/MRI-2 both determined a correct IPNHLSS tumor stage in 90/105 (86%) exams. Region-based analysis correctly identified 119/127 (94%) lymphoma-affected regions. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for PET/MRI-1 and PET/MRI-2 were 94%, 97%, 90%, 99%, 97%, respectively. There were no significant differences between PET/MRI-1 and PET/MRI-2. CONCLUSIONS The use of MRI contrast agents in [18F]FDG PET/MRI examinations has no beneficial effect in primary and follow-up staging of pediatric lymphoma patients. Therefore, switching to a contrast agent-free [18F]FDG PET/MRI protocol should be considered in all pediatric lymphoma patients. CLINICAL RELEVANCE STATEMENT This study gives a scientific baseline switching to a contrast agent-free [18F]FDG PET/MRI staging in pediatric lymphoma patients. This could avoid side effects of contrast agents and saves time and costs by a faster staging protocol for pediatric patients. KEY POINTS • No additional diagnostic benefit of MRI contrast agents at [18F]FDG PET/MRI examinations of pediatric lymphoma primary and follow-up staging • Highly accurate primary and follow-up staging of pediatric lymphoma patients at MRI contrast-free [18F]FDG PET/MRI.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lars Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Peter Minko
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany.
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| |
Collapse
|
7
|
Prognostic value of baseline and early response FDG-PET/CT in patients with refractory and relapsed aggressive B-cell lymphoma undergoing CAR-T cell therapy. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04587-4. [PMID: 36662305 PMCID: PMC10356653 DOI: 10.1007/s00432-023-04587-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells are a viable treatment option for patients with relapsed or refractory (r/r) aggressive B-cell lymphomas. The prognosis of patients who relapse after CAR-T cell treatment is dismal and factors predicting outcomes need to be identified. Our aim was to assess the value of FDG-PET/CT in terms of predicting patient outcomes. METHODS Twenty-two patients with r/r B-cell lymphoma who received CAR-T cell treatment with tisagenlecleucel (n = 17) or axicabtagene ciloleucel (n = 5) underwent quantitative FDG-PET/CT before (PET-0) and 1 month after infusion of CAR-T cells (PET-1). PET-1 was classified as complete metabolic response (CMR, Deauville score 1-3) or non-CMR (Deauville score 4-5). RESULTS At the time of PET-1, 12/22 (55%) patients showed CMR, ten (45%) patients non-CMR. 7/12 (58%) CMR patients relapsed after a median of 223 days, three of them (25%) died. 9/10 (90%) non-CMR patients developed relapse or progressive disease after a median of 91 days, eight of them (80%) died. CMR patients demonstrated a significantly lower median total metabolic tumor volume (TMTV) in PET-0 (1 ml) than non-CMR patients (225 ml). CONCLUSION Our results confirm the prognostic value of PET-1. 42% of all CMR patients are still in remission 1 year after CAR T-cell treatment. 90% of the non-CMR patients relapsed, indicating the need for early intervention. Higher TMTV before CAR-T cell infusion was associated with lower chances of CMR.
Collapse
|
8
|
Guja KE, Nadel H, Iagaru A. Overview and Recent Advances in 18F-FDG PET/CT for Evaluation of Pediatric Lymphoma. Semin Nucl Med 2022. [DOI: 10.1053/j.semnuclmed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|