1
|
Omura A, Kimura T, Maniwa T, Watabe T, Honma K, Shintani Y, Okami J. Quantification of the immunohistochemical staining of fibroblast activation protein in intrathoracic solitary fibrous tumors using QuPath. Surg Today 2025:10.1007/s00595-025-03024-y. [PMID: 40126602 DOI: 10.1007/s00595-025-03024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
PURPOSE Solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that can develop in the pleura. In the past, SFTs were considered benign, but there have been reports of SFTs being highly malignant. Fibroblast activation protein (FAP) is a serine protease, overexpressed in various cancers, which has been explored as a diagnostic and therapeutic target. We analyzed patients who underwent resection of an intrathoracic SFT, including metastatic pulmonary nodules from extrathoracic organs. METHODS The subjects of this retrospective study were seven patients with a primary SFT and two with metastatic SFTs in the lungs. After immunohistochemical staining of the resected tumors, quantification of the stained area was performed using QuPath. RESULTS Immunohistochemical quantification of FAP showed that it was expressed to varying degrees in the intrathoracic SFTs, with higher expression levels observed in metastatic SFTs than in primary pleural SFTs. Pathological examination confirmed the expression of FAP. CONCLUSION Our results support the potential usefulness of FAP in the diagnosis of intrathoracic SFTs, including metastatic pulmonary nodules.
Collapse
Affiliation(s)
- Akiisa Omura
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan.
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tomohiro Maniwa
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
2
|
Shirpour A, Hadadi A, Zolghadri S, Vosoughi S, Rajabifar S. Preclinical evaluation of [ 13xLa]La-FAP-2286 as a novel theranostic agent for tumors expressing fibroblast activation protein. Sci Rep 2025; 15:7475. [PMID: 40032959 DOI: 10.1038/s41598-025-91716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
In this study, a novel theranostic radiopharmaceutical, [13xLa]La-FAP-2286, for targeting Fibroblast Activation Protein (FAP)-positive tumors. The theranostic pair of 132La (half-life: 4.59 h, 42.1% β⁺) and 135La (half-life: 18.91 h, 100% EC) was produced via proton bombardment of natural barium in a 30 MeV cyclotron, achieving high radionuclidic purity (99.9%) and radiochemical purity (RCP > 99%). Stability tests revealed the RCP greater than 91% over 24 h in human serum and PBS buffer. Cellular studies confirmed high binding affinity (KD = 0.51 ± 0.12 nM) and effective internalization of [13xLa]La-FAP-2286 in FAP + tumor cells. Distribution coefficient (log D) measurements demonstrated high hydrophilicity of the complex with a value of - 3.21 ± 0.14. Imaging and biodistribution studies in tumor-bearing mice further confirmed tumor targeting, with significant uptake observed up to 48 h post-injection. These results suggest [13xLa]La-FAP-2286 can be considered a candidate for theranostic applications, offering both practical PET imaging and targeted Auger-electron therapy for cancer treatment.
Collapse
Affiliation(s)
- Ali Shirpour
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Asghar Hadadi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Zolghadri
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran.
| | - Sara Vosoughi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| | - Saeed Rajabifar
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran
| |
Collapse
|
3
|
Henrar RB, Vuijk FA, Burchell GL, van Dieren S, de Geus-Oei LF, Kazemier G, Vahrmeijer AL, Oprea-Lager DE, Swijnenburg RJ. Diagnostic Performance of Radiolabelled FAPI Versus [ 18F]FDG PET Imaging in Hepato-Pancreato-Biliary Oncology: A Systematic Review and Meta-Analysis. Int J Mol Sci 2025; 26:1978. [PMID: 40076605 PMCID: PMC11900289 DOI: 10.3390/ijms26051978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Radiolabelled fibroblast activation protein inhibitor (FAPI) tracers have the potential to overcome the limitations of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and improve the diagnosis and staging of hepato-pancreato-biliary (HPB) cancers. This study aims to compare the diagnostic performance of radiolabelled FAPI versus [18F]FDG PET imaging in HPB cancers. A systematic search of PubMed, Embase, Web of Science and Cochrane Library was performed to identify eligible studies on the diagnostic performance of FAPI PET for primary HPB tumours (hepatocellular carcinoma (HCC), pancreatic cancer (PC) and biliary tract cancer (BTC)) and for liver metastases of gastrointestinal origin. The diagnostic performance was defined as a combination of detection rate and semi-quantitative tracer uptake. A random-effects model was used to calculate the risk differences. In total, 28 studies were included. Histopathology was the reference standard for the primary tumour in 26 studies (93%). The detection rate of radiolabelled FAPI in comparison to [18F]FDG was significantly higher in HCC (0.33, 95% CI: 0.20-0.47 and 0.34, 95% CI: 0.23-0.45) and BTC (0.27, 95% CI: 0.11-0.43 and 0.28, 95% CI: 0.08-0.48), in the patient- and lesion-based analyses, respectively. In PC, no differences were observed. Radiolabelled FAPI outperformed [18F]FDG in the lesion-based detection of lymph node, liver and extra-hepatic metastases. In all HPB cancers, the mean SUVmax was significantly higher with radiolabelled FAPI compared to [18F]FDG. Molecular imaging with FAPI PET seems to have several benefits over [18F]FDG PET in HPB cancer diagnostics, with an overall higher tracer uptake, and higher detection rates in HCC and BTC.
Collapse
Affiliation(s)
- Rutger B. Henrar
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.B.H.); (S.v.D.); (G.K.)
- Cancer Center Amsterdam, Imaging and Biomarkers, Van der Boechorststraat 6B, 1081 BT Amsterdam, The Netherlands;
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - George L. Burchell
- Medical Library, Vrije Universiteit Amsterdam, de Boelelaan 1118, 1081 HV Amsterdam, The Netherlands;
| | - Susan van Dieren
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.B.H.); (S.v.D.); (G.K.)
- Cancer Center Amsterdam, Imaging and Biomarkers, Van der Boechorststraat 6B, 1081 BT Amsterdam, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.B.H.); (S.v.D.); (G.K.)
- Cancer Center Amsterdam, Imaging and Biomarkers, Van der Boechorststraat 6B, 1081 BT Amsterdam, The Netherlands;
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Daniela E. Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Van der Boechorststraat 6B, 1081 BT Amsterdam, The Netherlands;
- Department of Medical Imaging, Radboud University Medical Center, Geert Grootplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.B.H.); (S.v.D.); (G.K.)
- Cancer Center Amsterdam, Imaging and Biomarkers, Van der Boechorststraat 6B, 1081 BT Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Ballal S, Yadav MP, Satapathy S, Roesch F, Chandekar KR, Martin M, Shakir M, Agarwal S, Rastogi S, Moon ES, Bal C. Long-Term Outcomes in Radioiodine-Resistant Follicular Cell-Derived Thyroid Cancers Treated with [ 177Lu]Lu-DOTAGA.FAPi Dimer Therapy. Thyroid 2025; 35:188-198. [PMID: 39869019 DOI: 10.1089/thy.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Aim: The study aimed to analyze the long-term outcomes of [177Lu]Lu-DOTAGA.FAPi dimer therapy in individuals diagnosed with radioiodine-resistant (RAI-R) follicular cell-derived thyroid cancer. Materials and Methods: In this retrospective study, 73 patients with RAI-R follicular thyroid carcinoma who had undergone multiple lines of previous treatments were included. Following [68Ga]Ga-DOTA.SA.FAPi positron emission tomography-computed tomography scan, among the 73 patients, 65 received [177Lu]Lu-DOTAGA.FAPi dimer monotherapy with a median activity of 5.5 GBq per cycle at 8-week intervals. The remaining eight patients underwent tandem [177Lu]Lu/[225Ac]Ac-DOTAGA.FAPi dimer therapy, consisting of a median of two cycles of [177Lu]Lu-DOTAGA.FAPi dimer followed by one cycle of [225Ac]Ac-DOTAGA.FAPi dimer, also at 8-week intervals. The primary endpoint included progression-free survival (PFS) and overall survival (OS). Secondary endpoints included PERCIST criteria response assessment and safety assessment according to Common Terminology Criteria for Adverse Events (V5.0). Results: We enrolled 37 female and 36 male patients, with a mean age of 54.3 years (range: 27 - 80 years). The patients received a median cumulative activity of 22.2 GBq (range, 4 GBq-55.5 GBq) of [177Lu]Lu-DOTAGA-FAPi dimer over one to nine cycles, with a median of three cycles. Among 73 patients, 20 died and 16 deaths were due to thyroid cancer. Nineteen patients experienced disease progression, with an estimated median PFS of 29 months [CI 14-34 months]. The estimated median OS was 32 months [CI 21-40 months]. Four patients (5.4%) encountered grade III anemia, primarily linked to bone metastasis in three cases and neck tumor mass bleed in one. Grade III thrombocytopenia occurred in three patients (4%). No grade III renal or hepatotoxicity was observed. Conclusion: In this study, [177Lu]Lu-DOTAGA.FAPi dimer therapy showed promising safety and efficacy in aggressive, radioiodine-resistant thyroid cancer, achieving a median PFS and OS of 29 and 32 months, respectively, with manageable adverse events. Confirmation of our findings is needed from prospective clinical trials comparing [177Lu]Lu-DOTAGA.FAPi dimer therapy to other treatments.
Collapse
Affiliation(s)
- Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Frank Roesch
- Department of Chemistry-TRIGA, Johannes Gutenberg University, Mainz, Germany
| | - Kunal R Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Marcel Martin
- Department of Chemistry-TRIGA, Johannes Gutenberg University, Mainz, Germany
| | - Mohammad Shakir
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Rastogi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Euy Sung Moon
- Department of Chemistry-TRIGA, Johannes Gutenberg University, Mainz, Germany
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Banihashemian SS, Divband G, Shahrnoy AA, Nami R, Nasiri M, Akbari ME. Feasibility of Early 68 Ga-FAP-2286 PET Imaging: A Case Study. Clin Nucl Med 2025; 50:e94-e95. [PMID: 39501486 DOI: 10.1097/rlu.0000000000005519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
ABSTRACT Fibroblast activation protein (FAP) has emerged as a promising molecular target for diagnostic and therapeutic strategies. Previous research, including our own study and other published reports, has highlighted the potential of FAP inhibitors labeled with 68 Ga as effective diagnostic radiopharmaceuticals. In this study, we present a comparative analysis of early and late PET/CT scans, using 68 Ga-FAP-2286, for the detection of tumor lesions in a patient with metastatic breast adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Mohammad Esmaeil Akbari
- From the Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gunaratne GS, Gallant JP, Ott KL, Broome PL, Celada S, West JL, Mixdorf JC, Aluicio-Sarduy E, Engle JW, Boros E, Meimetis L, Lang JM, Zhao SG, Hernandez R, Kosoff D, LeBeau AM. Development of FAP-targeted theranostics discovered by next-generation sequencing-augmented mining of a novel immunized VNAR library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632555. [PMID: 39868181 PMCID: PMC11761682 DOI: 10.1101/2025.01.13.632555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies. As the smallest binding domain in nature, VNARs cleverage unique geometries and recognize epitopes conventional antibodies cannot. By directly immunizing a nurse shark with FAP, we created a large anti-FAP VNAR phage display library. This library allowed us to identify a suite of anti-FAP VNARs through traditional biopanning and also by an in silico approach that did not require any prior affinity-based enrichment in vitro. We investigated four VNAR-Fc fusion proteins for theranostic properties and found that all four recognized FAP with high affinity and were rapidly internalized by FAP-positive cells. As a result, the VNAR-Fc constructs were effective antibody-drug conjugates in vitro and were able to localize to FAP-positive xenografts in vivo. Our findings establish VNAR-Fc constructs as a versatile platform for theranostic development that could yield innovative cancer therapies targeting the TME.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joseph P. Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kendahl L. Ott
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Payson L. Broome
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sasha Celada
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cellular and Molecular Pathology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jayden L. West
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
7
|
Hope TA, Calais J, Goenka AH, Haberkorn U, Konijnenberg M, McConathy J, Oprea-Lager DE, Trimnal L, Zan E, Herrmann K, Deroose CM. SNMMI Procedure Standard/EANM Practice Guideline for Fibroblast Activation Protein (FAP) PET. J Nucl Med 2025; 66:26-33. [PMID: 39572227 PMCID: PMC11705787 DOI: 10.2967/jnumed.124.269002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Konijnenberg
- Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, Netherlands
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniela E Oprea-Lager
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Trimnal
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Elcin Zan
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
9
|
Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G. Progress and application of intelligent nanomedicine in urinary system tumors. J Pharm Anal 2024; 14:100964. [PMID: 39582528 PMCID: PMC11582553 DOI: 10.1016/j.jpha.2024.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 11/26/2024] Open
Abstract
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Collapse
Affiliation(s)
- Yingming Xiao
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Zhong
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinpeng Liu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Chen
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yi Wu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ge Li
- Emergency Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
10
|
Tang R, Liu M, Shu Q, Chen X, Cai L. Performance of fibroblast activating protein inhibitor PET imaging for pancreatic neoplasms assessment: a systematic review and meta-analysis. Eur Radiol 2024; 34:7804-7812. [PMID: 38907099 DOI: 10.1007/s00330-024-10843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Recent studies have shown the potential of fibroblast activating protein inhibitor (FAPI) PET imaging for pancreatic cancer assessment. PURPOSE This article is dedicated to comparing the diagnostic efficacy of FAPI PET and [18F]fluorodeoxyglucose (FDG) PET in the evaluation of primary tumors, lymph nodes, and distant metastases in pancreatic cancer. METHODS In this review, we conducted a systematic search of studies published in PubMed and Web of Science databases up to September 18, 2023. All included studies used radionuclide labeled FAPI and FDG as PET diagnostic tracers to evaluate their applicability in patients with pancreatic cancer. RESULTS The FAPI PET imaging group showed significantly higher sensitivity in the detection of primary lesions (1.000, [95% CI: 0.999-1.000]), lymph node metastases (0.624 [95% CI: 0.391-0.834]) and distant metastatic (0.965 [95% CI: 0.804-1.000]) in pancreatic cancer compared to the FDG PET imaging group (0.889 [95% CI: 0.788-0.966], 0.373 [95% CI: 0.163-0.606] and 0.889 [95% CI: 0.689-0.999], respectively). Furthermore, the maximum standardized uptake value (SUVmax) in FAPI PET imaging is significantly higher than that in FDG imaging for primary lesions (mean difference (MD) = 7.51, 95% CI: 5.34-9.67). CONCLUSION Compared with [18F]FDG PET/CT, FAPI PET imaging showed higher sensitivity, SUVmax. This method can be effectively utilized for the evaluation of pancreatic cancer. CLINICAL RELEVANCE STATEMENT Fibroblast activating protein inhibitor PET may be a better alternative to [18F]FDG in evaluating primary pancreatic cancer, lymph node metastases, and distant metastases. KEY POINTS Fibroblast activating protein inhibitor (FAPI) PET is compared with FDG PET for evaluating pancreatic cancer. Multiple radiolabeled FAPI variants have shown promising results in the diagnosis of pancreatic cancer. FAPI PET imaging effectively helps clinicians diagnose and stage pancreatic cancer.
Collapse
Affiliation(s)
- Ranbie Tang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, PR China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
| | - Mengna Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, PR China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
| | - Qiaoqiao Shu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, PR China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
| | - Xi Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, PR China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, PR China.
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, 646000, Luzhou, Sichuan, PR China.
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, 400010, Chongqing, PR China.
| |
Collapse
|
11
|
Banihashemian SS, Akbari ME, Pirayesh E, Divband G, Abolhosseini Shahrnoy A, Nami R, Mazidi SM, Nasiri M. Feasibility and therapeutic potential of [ 177Lu]Lu-FAPI-2286 in patients with advanced metastatic sarcoma. Eur J Nucl Med Mol Imaging 2024; 52:237-246. [PMID: 39060377 DOI: 10.1007/s00259-024-06795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION The unique expression pattern of fibroblast activation protein (FAP) in stromal and tumor cells, particularly in sarcomas, and its absence in normal tissues, have positioned it as a promising theragnostic approach for the detection and treatment of various cancer types. The objective of this prospective study is to assess the feasibility, safety, biodistribution, and therapeutic efficacy of [177Lu]Lu-FAPI-2286 in patients with advanced metastatic sarcoma. PATIENTS AND METHODS Eight patients with advanced metastatic sarcoma, who were unresectable or had experienced disease recurrence following conventional treatments, underwent PTRT (peptide-targeted radionuclide therapy) using [177Lu]Lu-FAPI-2286. Prior to the treatment, confirmation of tumor uptake was obtained through [68Ga]Ga-FAPI-2286 PET/CT. RESULTS After four cycles of PTRT with [177Lu]Lu-FAPI-2286 (6660-7400 MBq), with a 6-8-week interval between each cycle, no grade 3 or 4 side effects were observed in the patients, and the treatment was well tolerated by all participants. The results demonstrated a 52.37% reduction in the average volume of the primary tumor, accompanied by a significant decrease in SUVmax and TBR of the metastatic lesions (29.67% and 43.66% respectively), especially in cases of lung metastasis. Furthermore, besides the improvement in physical capacity, there was a noticeable reduction in pain, an increase in overall survival, and enhanced satisfaction with the treatment reported by the patients. CONCLUSION [177Lu]Lu-FAPI-2286 PTRT, utilized for diverse cancer types, exhibited favorable tolerability in sarcoma patients, with minimal side effects, long-lasting retention of the radiopeptide within the tumor, and promising therapeutic effects. Preliminary findings of this prospective study need to be confirmed through further clinical trials.
Collapse
Affiliation(s)
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tajrish Sq, Tehran, 19899-34148, Iran.
| | - Elahe Pirayesh
- Department of Nuclear Medicine, Shohada'e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
12
|
Liu Y, Pan J, Jing F, Chen X, Zhao X, Zhang J, Zhang Z, Wang J, Dai M, Wang N, Zhao X, Han J, Wang T, Chen X, Yuan H. Comparison of 68Ga-FAPI-04 and 18F-FDG PET/CT in diagnosing ovarian cancer. Abdom Radiol (NY) 2024; 49:4531-4542. [PMID: 38937339 DOI: 10.1007/s00261-024-04469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE This study assesses the diagnostic performance of 68Ga-FAPI-04 PET/CT compared to 18F-FDG PET/CT in primary, recurrent, and metastatic ovarian cancer. METHODS Seventy-nine ovarian cancer patients who performed 68Ga-FAPI-04 and 18F-FDG PET/CT were recruited. The target-to-background ratio (TBR), maximum standardized uptake value (SUVmax), the number of positive lesions, visual assessment, the peritoneal cancer index (PCI) score, staging/restaging, and treatment strategies were compared from the corresponding PET/CT. Additionally, we analyzed and contrasted the diagnostic efficacy in both scans. RESULTS Among all patients, 6 were assessed for initial assessment and 73 for recurrence and metastasis detection. For all lesions, 68Ga-FAPI-04 PET/CT demonstrated greater TBR than 18F-FDG PET/CT. 68Ga-FAPI-04 PET/CT demonstrated higher sensitivity for peritoneal metastases including patient-based and lesion-based analysis (95.00% vs. 83.33%, P = 0.065; 90.16% vs. 60.66%, P < 0.001) and a higher PCI score [median PCI: 6 (4, 12) vs. 4 (2, 8), P < 0.001]. According to the visual assessment, 68Ga-FAPI-04 PET revealed larger extent metastases in 55.93% (33/59) of the patients with peritoneal metastases. 68Ga-FAPI-04 was upstaged in 7 patients (8.86%, 7/79) and discrepancies in both scans caused treatment strategies to change in 11 patients (13.92%, 11/79). CONCLUSION 68Ga-FAPI-04 PET/CT outperforms 18F-FDG PET/CT in identifying metastases and can be a potential supplement for managing ovarian cancer patients.
Collapse
Affiliation(s)
- Yunuan Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jiangyang Pan
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Fenglian Jing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, Hebei, China.
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Meng Dai
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Na Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xiujuan Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Tingting Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xiaoshan Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Huiqing Yuan
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
13
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
14
|
Peștean C, Piciu D. Diagnostic Value of Nuclear Hybrid Imaging in Malignant Struma Ovarii: A Systematic Review of Case Reports. Diagnostics (Basel) 2024; 14:2630. [PMID: 39682538 DOI: 10.3390/diagnostics14232630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Struma ovarii is a rare tumor, a type of ovarian mature teratoma consisting over 50% of its mass in thyroid ectopic tissue; 5% to 10% of cases, as described in the literature, are malignant and well known as malignant struma ovarii or thyroid cancer from struma ovarii. Due to the limited number of malignant struma ovarii cases, the diagnostic and therapeutic approach of malignant struma ovarii lacks in standardization. METHODS We performed a comprehensive search on the English language PubMed and Google Scholar. We used specific controlled keywords "PET CT", "SPECT CT", "PET MRI", "malignant struma ovarii", "hybrid imaging" and "mature ovarian teratoma". Upon the retrieval of potential articles, we analyzed them for their eligibility. The inclusion criteria were: articles discussing the role of PET/CT and SPECT/CT hybrid imaging in malignant struma ovarii, full-text articles on the topic of interest and English publications. The exclusion criteria were articles not directly related to the hybrid imaging and not discussing the subject of malignant struma ovarii. RESULTS A total of 64 articles were screened, 35 duplicates were eliminated, 15 articles excluded and a total number of 14 articles were included for this systematic review, 13 of them being case reports and one being a case report with a systematic review. F-18 FDG PET/CT contributed in seven cases (50%), I-131 NaI SPECT/CT in seven cases (50%) and I-124 NaI PET/CT in two cases (14.29%). In two cases, 131 NaI SPECT/CT and F-18 FDG PET/CT were used as complementary investigation tools. The hybrid imaging methods used as a part of the diagnostic strategy were accompanied by several diagnostic alternatives: ultrasounds, CT, MRI, I-131 NaI WBS and I-123 NaI WBS. CONCLUSIONS There is no consistent or standardized diagnostic and therapeutic approach for malignant struma ovarii. Hybrid imaging methods may be of great value in initial diagnostic and the association of F-18 FDG PET/CT and I-131 NaI SPECT/CT is a successful diagnostic approach. The association of hybrid imaging with other diagnostic imaging alternatives in initial diagnostic and follow up is essential.
Collapse
Affiliation(s)
- Claudiu Peștean
- Faculty of Medicine, Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8 V. Babeș St., 400006 Cluj-Napoca, Romania
- "Ion Chiricuță" Oncology Institute, 34-36 Republicii st., 400015 Cluj-Napoca, Romania
- Affidea CT Clinic, 65-67 Republicii St., 400489 Cluj-Napoca, Romania
| | - Doina Piciu
- Faculty of Medicine, Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8 V. Babeș St., 400006 Cluj-Napoca, Romania
- Affidea CT Clinic, 65-67 Republicii St., 400489 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Ayati N, Askari E, Fotouhi M, Soltanabadi M, Aghaee A, Roustaei H, Scott AM. Nuclear medicine imaging in non-seminomatous germ cell tumors: lessons learned from the past failures. Cancer Imaging 2024; 24:156. [PMID: 39558421 PMCID: PMC11571929 DOI: 10.1186/s40644-024-00794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
There is an unmet need for a more accurate molecular imaging radiotracer in the field of non-seminomatous germ cell tumors (NSGCT). The clinical problem is that no single imaging modality is able to differentiate teratoma from necrotic tissue in NSGCTs, which the nuclear medicine techniques are no exception. The exponential growth in the list of potentially promising radiotracers may hold promise in the future for imaging of NSGCTs. Here, we have reviewed the past efforts and potential future advances in this field.
Collapse
Affiliation(s)
- Narjess Ayati
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Maryam Fotouhi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masume Soltanabadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atena Aghaee
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Hesamoddin Roustaei
- Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
17
|
Liu S, Zhong J, Zhang Z, Zhao R, Yan Q, Wang X. [ 64Cu]Cu-FAP-NOX, a N-oxalyl modified cyclic peptide for FAP PET imaging with a flexible imaging time window. Eur J Nucl Med Mol Imaging 2024; 51:3651-3661. [PMID: 38910166 DOI: 10.1007/s00259-024-06807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The aim of the present study was to develop a novel 64Cu-labeled cyclic peptide ([64Cu]Cu-FAP-NOX) that targets fibroblast activation protein (FAP) and may offer advantages in terms of image contrast, imaging time window, and low uptake in normal tissues. METHODS The novel cyclic peptide featuring with a N-oxalyl modified tail was constructed and conjugated to NOTA for 64Cu labeling. Biochemical and cellular assays were performed with A549.hFAP cells. The performance of [64Cu]Cu-FAP-NOX was compared to that of two established tracers ([64Cu]Cu-FAPI-04 and [68Ga]Ga-FAP-2286) and three different NOTA-conjugates in HEK-293T.hFAP xenograft mice using micro-PET imaging. Ex vivo biodistribution studies were performed to confirm the FAP specificity and to validate the PET data. Furthermore, a first-in-human study of this novel tracer was conducted on one patient with lung cancer. RESULTS Compared to [64Cu]Cu-FAPI-04, [64Cu]Cu-FAP-NOX demonstrated faster and higher rates of cellular uptake and internalization in A549.hFAP cells, but lower rates of cellular efflux. All six radiotracers were rapidly taken up by the tumor within the first 4 h post-injection. However, [64Cu]Cu-FAP-NOX had more intense tumor accumulation and slower washout from the target. The ratios of the tumor to normal tissue (including kidneys and muscles) increased significantly over time, with [64Cu]Cu-FAP-NOX reaching the highest ratio among all tracers. In the patient, [64Cu]Cu-FAP-NOX PET showed a comparable result to FDG PET in the primary malignant lesion while exhibiting higher uptake in pleural metastases, consistent with elevated FAP expression as confirmed by immunohistochemistry. CONCLUSION [64Cu]Cu-FAP-NOX is a promising FAP-targeted tracer with a highly flexible imaging time window, as evidenced by preclinical evaluation encompassing biodistribution and micro-PET studies, along with a successful patient application. Furthermore, [64Cu]Cu-FAP-NOX showed enhanced image contrast and favorable pharmacokinetic properties for FAP PET imaging, warranting translation into large cohort studies.
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qingsong Yan
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
18
|
Liu S, Zhang Z, Zhong J, Zhong H, Fu Y, Liu L, Ye X, Wang X. Preclinical evaluation and first-in-human study of [ 18F]AlF-FAP-NUR for PET imaging cancer-associated fibroblasts. EJNMMI Res 2024; 14:87. [PMID: 39352615 PMCID: PMC11445204 DOI: 10.1186/s13550-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) has gained attention as a promising molecular target with potential utility for cancer diagnosis and therapy. [68Ga]Ga-labeled FAP-targeting peptides have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To meet the applicable demand for peptide-based FAP tracers with high patient throughput, we herein report the radiosynthesis, preclinical evaluation, and the first-in-human imaging of a novel [18F]F-labeled FAP-targeting peptide. RESULTS [18F]AlF-FAP-NUR was automatedly prepared within 45 min with a non-decay corrected radiochemical yield of 18.73 ± 4.25% (n = 3). Compared to [68Ga]Ga-FAP-2286, the [18F]F-labeled peptide demonstrated more rapid, higher levels of cellular uptake and internalization, and lower levels of cellular efflux in HT1080-FAP cells. Micro-PET imaging and biodistribution studies conducted on xenograft mice models revealed a similar distribution pattern between the two tracers. However, [18F]AlF-FAP-NUR demonstrated significantly higher tumor-specific uptake resulting in improved Tumor-Background Ratios (TBRs). In the patients, a significant accumulation of [18F]AlF-FAP-NUR was found in the primary tumor. High uptake of the tracer within the bladder indicated that its major route of excretion was through urine. CONCLUSIONS Based on the physical imaging properties and longer half-life of [18F]F, [18F]AlF-FAP-NUR exhibited promising characteristics such as enhanced tumor-specific accumulation and elevated TBRs, which made it a viable candidate for further clinical investigation. TRIAL REGISTRATION www.Chictr.org.cn , ChiCTR2300076976 Retrospectively registered 25 October 2023. at, URL: https://www.chictr.org.cn/showproj.html?proj=206753 .
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yimin Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lifang Liu
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaoting Ye
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
19
|
Xie Y, Ma J, Tang W, Zhang Y, Zhang C, Chen Y. Efficacy and Safety Evaluation of 177Lu-FAP-2286 in the Treatment of Advanced Lung Cancer. Clin Nucl Med 2024; 49:830-837. [PMID: 39102810 DOI: 10.1097/rlu.0000000000005297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy and safety of peptide-targeted radionuclide therapy (PTRT) with 177Lu-FAP-2286 in advanced lung cancer. PATIENTS AND METHODS This single-center prospective study included 9 patients diagnosed with advanced lung cancer. These patients met the inclusion criteria and received PTRT with 177Lu-FAP-2286. Short-term efficacy was assessed using RECIST 1.1 and PERCIST 1.0 criteria. Long-term efficacy was evaluated through overall survival, progression-free survival (PFS), overall response rate, EORTC QLQ-C30 v3.0, Eastern Cooperative Oncology Group, and Karnofsky Performance Status. Toxicity response was assessed using CTCAE v5.0. RESULTS The results based on RECIST 1.1 and PERCIST 1.0 criteria were comparable, with 44% of patients showing a partial metabolic response, 33.3% with stable metabolic disease, and 22.22% with progressive metabolic disease. The highest metabolic response after treatment reached 66.89%, and the overall response rate could reach 77.78%. In the long-term efficacy assessment, the median overall survival and PFS were 10 months and 6 months, respectively. The 2 patients with the lowest PFS (3 months) started PTRT relatively late. EORTC QLQ-C30 v3.0, Eastern Cooperative Oncology Group, and Karnofsky Performance Status scores showed that the overall health status, symptom response, and quality of life of patients improved after 177Lu-FAP-2286 treatment. The most noticeable improvements in clinical symptoms were dyspnea and cancer-related pain. No grade III/IV toxicity events were observed during follow-up period, and fibrinogen decreased significantly after treatment. CONCLUSIONS 177Lu-FAP-2286 has the potential to be a viable PTRT option for patients with advanced lung cancer.
Collapse
|
20
|
Hörmann AA, Schweighofer-Zwink G, Rendl G, Türk K, Nadeje S, Haas K, Jung T, Huber-Schönauer U, Hehenwarter L, Beheshti M, Pirich C. [ 68Ga]Ga-FAP-2286-Synthesis, Quality Control and Comparison with [ 18F]FDG PET/CT in a Patient with Suspected Cholangiocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1141. [PMID: 39338305 PMCID: PMC11435094 DOI: 10.3390/ph17091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
[68Ga]Ga-FAP-2286 is a new peptide-based radiopharmaceutical for positron-emission tomography (PET) that targets fibroblast activation protein (FAP). This article describes in detail the automated synthesis of [68Ga]Ga-FAP-2286 using a commercially available synthesis tool that includes quality control for routine clinical applications. The synthesis was performed using a Scintomics GRP-3V module and a GMP grade 68Ge/68Ga generator. A minor alteration for transferring the eluate to the module was established, eliminating the need for new method programming. Five batches of [68Ga]Ga-FAP-2286 were tested to validate the synthesis. A stability analysis was conducted up to 3 h after production to determine the shelf-life of the finished product. The automated synthesis on the Scintomics GRP-3V synthesis module was found to be compliant with all quality control requirements. The shelf-life of the product was set to 2 h post-production based on the stability study. A patient suffering from cholangiocellular carcinoma that could not be clearly detected by conventional imaging, including a [18F]FDG-PET/CT, highlights the potential use of [68Ga]Ga-FAP-PET/CT.
Collapse
|
21
|
Yu Q, Xie Q, Zhu X, Wang X, Ni M. Increase 68Ga-FAPI Uptake in Urogenital Tuberculosis. Clin Nucl Med 2024:00003072-990000000-01261. [PMID: 39193937 DOI: 10.1097/rlu.0000000000005418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Urogenital tuberculosis is one of common sites of extrapulmonary tuberculosis. A 60-year-old man with an elevated prostate-specific antigen level underwent multiparametric MRI, which revealed abnormal signals in the prostate. However, the 68Ga-PSMA PET/CT results were unrevealing. Subsequent 68Ga-FAPI PET/CT imaging revealed intense radioactivity uptake in the prostate and mild radioactivity uptake in the left kidney, which was eventually proven due to tuberculosis.
Collapse
Affiliation(s)
| | - Qiang Xie
- Division of Life Sciences and Medicine, Department of Nuclear Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xingxing Zhu
- Division of Life Sciences and Medicine, Department of Nuclear Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuemei Wang
- Division of Life Sciences and Medicine, Department of Nuclear Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Ni
- Division of Life Sciences and Medicine, Department of Nuclear Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
22
|
Ge DF, Ren H, Yang ZC, Zhao SX, Cheng ZT, Wu DD, Zhang B. Application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging in recurrent anastomotic tumors after surgery in digestive tract tumors. World J Gastrointest Surg 2024; 16:2474-2483. [PMID: 39220071 PMCID: PMC11362925 DOI: 10.4240/wjgs.v16.i8.2474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND This study was to investigate the application value of whole-body dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in recurrent anastomotic tumors of digestive tract after gastric and esophageal cancer surgery. Postoperative patients with gastric and esophageal cancer have a high risk of tumor recurrence, and traditional imaging methods have certain limitations in early detection of recurrent tumors. Whole-body dynamic 18F-FDG PET/CT imaging, due to its high sensitivity and specificity, can provide comprehensive information on tumor metabolic activity, which is expected to improve the early diagnosis rate of postoperative recurrent tumors, and provide an important reference for clinical treatment decision-making. AIM To investigate the clinical value of whole-body dynamic 18F-FDG PET/CT imaging in differentiating anastomotic recurrence and inflammation after the operation of upper digestive tract tumors. METHODS A retrospective analysis was performed on 53 patients with upper digestive tract tumors after operation and systemic dynamic 18F-FDG PET/CT imaging indicating abnormal FDG uptake by anastomosis, including 29 cases of gastric cancer and 24 cases of esophageal cancer. According to the follow-up results of gastroscopy and other imaging examinations before and after PET/CT examination, the patients were divided into an anastomotic recurrence group and anastomotic inflammation group. Patlak multi-parameter analysis software was used to obtain the metabolic rate (MRFDG), volume of distribution maximum (DVmax) of anastomotic lesions, and MRmean and DVmean of normal liver tissue. The lesion/background ratio (LBR) was calculated by dividing the MRFDG and DVmax of the anastomotic lesion by the MRmean and DVmean of the normal liver tissue, respectively, to obtain LBR-MRFDG and LBR-DVmax. An independent sample t test was used for statistical analysis, and a receiver operating characteristic curve was used to analyze the differential diagnostic efficacy of each parameter for anastomotic recurrence and inflammation. RESULTS The dynamic 18F-FDG PET/CT imaging parameters MRFDG, DVmax, LBR-MRFDG, and LBR-DVmax of postoperative anastomotic lesions in gastric cancer and esophageal cancer showed statistically significant differences between the recurrence group and the inflammatory group (P < 0.05). The parameter LBR-MRFDG showed good diagnostic efficacy in differentiating anastomotic inflammation from recurrent lesions. In the gastric cancer group, the area under the curve (AUC) value was 0.935 (0.778, 0.993) when the threshold was 1.83, and in the esophageal cancer group, the AUC value was 1. When 86 is the threshold, the AUC value is 0.927 (0.743, 0.993). CONCLUSION Whole-body dynamic 18F-FDG PET/CT imaging can accurately differentiate the diagnosis of postoperative anastomotic recurrence and inflammation of gastric cancer and esophageal cancer and has the potential to be an effective monitoring method for patients with upper digestive tract tumors after surgical treatment.
Collapse
Affiliation(s)
- Deng-Feng Ge
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Hao Ren
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zi-Chen Yang
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shou-Xiang Zhao
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhen-Ting Cheng
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Da-Da Wu
- Department of Gastrointestinal Surgery, Shanghai Sixth People’s Hospital, Shanghai 250063, China
| | - Bin Zhang
- Department of Cardiothoracic Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
23
|
Lindeman SD, Booth OC, Tudi P, Schleinkofer TC, Moss JN, Kearney NB, Mukkamala R, Thompson LK, Modany MA, Srinivasarao M, Low PS. FAP Radioligand Linker Optimization Improves Tumor Dose and Tumor-to-Healthy Organ Ratios in 4T1 Syngeneic Model. J Med Chem 2024; 67:11827-11840. [PMID: 39013156 DOI: 10.1021/acs.jmedchem.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance. Seven FAP6 derivatives with different linkers or albumin binders were synthesized, radiolabeled, and investigated for their effects on binding and cellular uptake. The radioligands were then characterized in 4T1 tumor-bearing Balb/c mice using both single-photon emission computed tomography (SPECT) and ex vivo biodistribution analyses to identify the conjugate with the best tumor retention and tumor-to-healthy organ ratios. The results reveal an optimized FAP6 radioligand that exhibits efficacy and safety properties that potentially justify its translation into the clinic.
Collapse
Affiliation(s)
- Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Owen C Booth
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pooja Tudi
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taylor C Schleinkofer
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson N Moss
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas B Kearney
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lauren K Thompson
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mollie A Modany
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| |
Collapse
|
24
|
Xiang F, Zhang Y, Tan X, Zhang J, Li T, Yan Y, Ma W, Chen Y. Comparison of 68Ga-FAP-2286 and 18F-FDG PET/CT in the diagnosis of advanced lung cancer. Front Oncol 2024; 14:1413771. [PMID: 39011487 PMCID: PMC11246890 DOI: 10.3389/fonc.2024.1413771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose The 68Ga/177Lu-FAP-2286 is a newly developed tumor imaging agent that shows potential for visualizing and treating tumor stroma. The objective of this research was to evaluate the effectiveness of 68Ga-FAP-2286 PET/CT and 18F-FDG PET/CT in diagnosing advanced lung cancer. Methods In this prospective study, patients with lung cancer who underwent 68Ga-FAP-2286 and 18F-FDG PET/CT examinations between September 2022 and June 2023 were analyzed. Lesion uptake was converted to SUVmax. A paired T-test was used to compare the SUVmax, and the number of positive lesions detected by the two methods was recorded. Results In total, 31 participants (median age: 56 years) were assessed. The uptake of 68Ga-FAP-2286 was significantly higher than that of 18F-FDG in primary lesions (9.90 ± 5.61 vs. 6.09 ± 2.84, respectively, P < 0.001), lymph nodes (7.95 ± 2.75 vs. 5.55 ± 1.59, respectively, P=0.01), and bone metastases (7.74 ± 3.72 vs. 5.66 ± 3.55, respectively, P=0.04). Furthermore, the detection sensitivity of lymph nodes using 68Ga-FAP-2286 PET/CT was superior to that with 18F-FDG PET/CT [100% (137/137) vs. 78.8% (108/137), respectively], as well as for bone metastases [100% (384/384) vs. 68.5% (263/384), respectively]. However, the detection sensitivity for primary tumors using both modalities was comparable [100% (13/13) for both]. Conclusion Compared to 18F-FDG PET/CT, 68Ga-FAP-2286 PET/CT demonstrated better lesion detection capabilities for lung cancer, particularly in lymph nodes and bone metastases, providing compelling imaging evidence for the efficacy of 177Lu-FAP-2286 treatment.
Collapse
Affiliation(s)
- Feifan Xiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Department of Orthopedic, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Orthopedic, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoqi Tan
- Department of Dermatology, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jintao Zhang
- Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Tengfei Li
- Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Wenzhe Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Manuppella F, Pisano G, Taralli S, Caldarella C, Calcagni ML. Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review. Int J Mol Sci 2024; 25:7197. [PMID: 39000301 PMCID: PMC11241825 DOI: 10.3390/ijms25137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
PET/CT using radiolabeled fibroblast activation protein inhibitors (FAPIs) is a promising diagnostic tool in oncology, especially when non-increased and/or physiologically high [18F]FDG uptake (as in liver parenchyma) is observed. We aimed to review the role of PET/CT using radiolabeled FAPIs in primary and/or metastatic liver lesions, and to compare their performances with more "conventional" radiopharmaceuticals. A search algorithm based on the terms "FAPI" AND ("hepatic" OR "liver") was applied, with the last update on 1st January 2024. Out of 177 articles retrieved, 76 studies reporting on the diagnostic application of radiolabeled FAPI PET/CT in at least one patient harboring primary or metastatic liver lesion(s) were fully analyzed. Although there was some heterogeneity in clinical conditions and/or study methodology, PET/CT with radiolabeled FAPIs showed an excellent performance in common primary liver malignancies (hepatocarcinoma, intrahepatic cholangiocarcinoma) and liver metastases (mostly from the gastrointestinal tract and lungs). A higher tumor-to-background ratio for FAPIs than for [18F]FDG was found in primary and metastatic liver lesions, due to lower background activity. Despite limited clinical evidence, radiolabeled FAPIs may be used to assess the suitability and effectiveness of FAPI-derived therapeutic agents such as [177Lu]Lu-FAPI. However, future prospective research on a wider population is needed to confirm the excellent performance.
Collapse
Affiliation(s)
- Federica Manuppella
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Giusi Pisano
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Silvia Taralli
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
| | - Carmelo Caldarella
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
| | - Maria Lucia Calcagni
- Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (F.M.); (G.P.); (S.T.); (M.L.C.)
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
26
|
Singh P, Singhal T, Parida GK, Rahman A, Agrawal K. Diagnostic Performance of FAPI PET/CT vs. 18F-FDG PET/CT in Evaluation of Liver Tumors: A Systematic Review and Meta-analysis. Mol Imaging Radionucl Ther 2024; 33:77-89. [PMID: 38949417 PMCID: PMC11589277 DOI: 10.4274/mirt.galenos.2024.99705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/03/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Primary liver tumors constitute one of the most common tumors. These are aggressive tumors with poor survival. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), most commonly used functional imaging, shows limited tracer retention and poor tumor to background ratios (TBR). Novel 68Ga-fibroblast-activation-protein inhibitor (FAPI) PET/CT has shown better tracer uptake and detection efficacy in liver tumors. However, most of the available literature is limited to single center studies with limited number of patients. So, we tried to review and analyze the head-to-head comparison of 18F-FDG PET/CT and 68Ga-FAPI PET/CT in evaluation of liver tumors. Methods Literature available on head to head comparison of diagnostic accuracy of 18F-FDG PET/CT and 68Ga-FAPI PET/CT was searched in databases like PubMed, SCOPUS, EMBASE and Google Scholar for published original studies till April 2023. The relevant studies were selected and assessed using the Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies-2 checklist. A random-effect model was used for calculating pooled sensitivity and specificity. They were represented with 95% confidence intervals (95% CI) and demonstrated in Forest plots. I-square statistic was used to assess heterogeneity in the studies. Results Pooled sensitivity and specificity of FAPI PET/CT and 18F-FDG PET/CT for detection of primary liver tumors was 94.3% (95% CI: 90.6-96.8%); 89.3% (95% CI: 71.8-97.7%) and 56.1% (95% CI: 49.7-62.5%); 96.4% (95% CI: 81.7-99.9%) respectively. Pooled sensitivity for detection of extrahepatic metastatic disease was 92.2% (range: 88.1-100%; 95% CI: 87.8-95.4%) and 72.4% (range: 69.8-76.5; 95% CI: 65.9-78.2%) respectively. Also, the maximum standardized uptake value (SUVmax) and TBR were higher for FAPI PET/CT than 18F-FDG PET/CT in the included studies. Conclusion Overall, FAPI PET/CT showed higher sensitivity for detection of liver tumors with better SUVmax and TBR than 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Parneet Singh
- All India Institute of Medical Sciences Department of Nuclear Medicine, Bhubaneswar, India
| | - Tejasvini Singhal
- All India Institute of Medical Sciences Department of Nuclear Medicine, Bhubaneswar, India
| | - Girish Kumar Parida
- All India Institute of Medical Sciences Department of Nuclear Medicine, Bhubaneswar, India
| | - Ashique Rahman
- All India Institute of Medical Sciences Department of Nuclear Medicine, Bhubaneswar, India
| | - Kanhaiyalal Agrawal
- All India Institute of Medical Sciences Department of Nuclear Medicine, Bhubaneswar, India
| |
Collapse
|
27
|
Peștean C, Pavel A, Piciu D. The Role of SPECT/CT and PET/CT Hybrid Imaging in the Management of Ectopic Thyroid Carcinoma-A Systematic Review. Diagnostics (Basel) 2024; 14:1369. [PMID: 39001259 PMCID: PMC11241737 DOI: 10.3390/diagnostics14131369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Thyroid ectopy represents a rare disease with an incidence of 0.3-1/100,000. It occurs due to the defective embryological process of the thyroid gland development. The thyroid ectopic tissue may suffer malignant transformation. This review aims to shed light on the roles that I-131 SPECT/CT (radioiodine 131 single-photon emission tomography fused with computed tomography) and F-18 PET/CT (fluorodeoxyglucose F18 positron emission tomography fused with computer tomography) may play in managing patients with ectopic thyroid carcinoma. MATERIALS AND METHODS A total number of 47 articles were identified on the PubMed and Google Scholar databases, and 3 other articles were selected from articles identified in the references cited in the retrieved articles. After refining the selection, the inclusion and exclusion criteria were applied, resulting in 10 articles that were included in the review. RESULTS The cases of ectopy included in this review were localised as follows: four cases in the thyroglossal duct, two cases in the mediastinum, one case in the oesophagus, one case in the thorax, one case with a pre-tracheal location, and one case with a latero-cervical location. In all the cases, F-18 FDG PET/CT was used as a diagnostic tool. In one case, F-18 FDG PET/CT was combined with I-131 SPECT/CT and MRI (magnetic resonance imaging). In one case, it was combined with 68 Ga-FAPI PET/CT (Ga-68 radiolabelled FAP inhibitor positron emission tomography fused with computer tomography). The maximum SUVs (standardised uptake values) ranged from 5.5 to 25 g/mL. CONCLUSIONS F-18 PET/CT and I-131 SPECT/CT hybrid nuclear imaging is of great value in assessing ectopic thyroid carcinoma. F-18 FDG PET/CT plays an important role in the primary tumour evaluation and distant disease detection. Ga-68 FAPIs are a promising alternative. I-131 SPECT/CT adds important information related to the anatomical characterization of primary and distant iodine-avid lesions.
Collapse
Affiliation(s)
- Claudiu Peștean
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.P.); (D.P.)
- “Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania
- Affidea CT Clinic, 400015 Cluj-Napoca, Romania
| | - Alexandru Pavel
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.P.); (D.P.)
- Affidea CT Clinic, 400015 Cluj-Napoca, Romania
- Emergency Clinical County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Doina Piciu
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.P.); (D.P.)
- Affidea CT Clinic, 400015 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Kline B, Yadav S, Seo Y, Ippisch RC, Castillo J, Aggarwal RR, Kelley RK, Behr SC, Flavell RR, Lawhn-Heath C, Melisko M, Rugo HS, Wang V, Yom SS, Ha P, Jiang F, Hope TA. 68Ga-FAP-2286 PET of Solid Tumors: Biodistribution, Dosimetry, and Comparison with 18F-FDG. J Nucl Med 2024; 65:938-943. [PMID: 38697672 PMCID: PMC11149593 DOI: 10.2967/jnumed.123.267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Fibroblast activation protein (FAP), expressed in the tumor microenvironment of a variety of cancers, has become a target of novel PET tracers. The purpose of this report is to evaluate the imaging characteristics of 68Ga-FAP-2286, present the first-to our knowledge-dosimetry analysis to date, and compare the agent with 18F-FDG and FAPI compounds. Methods: Patients were administered 219 ± 43 MBq of 68Ga-FAP-2286 and scanned after 60 min. Uptake was measured in up to 5 lesions per patient and within the kidneys, spleen, liver, and mediastinum (blood pool). Absorbed doses were evaluated using MIM Encore and OLINDA/EXM version 1.1 using the International Commission on Radiological Protection publication 103 tissue weighting factor. Results: Forty-six patients were imaged with 68Ga-FAP-2286 PET. The highest average uptake was seen in sarcoma, cholangiocarcinoma, and colon cancer. The lowest uptake was found in lung cancer and testicular cancer. The average SUVmax was significantly higher on 68Ga-FAP-2286 PET than on 18F-FDG PET in cholangiocarcinoma (18.2 ± 6.4 vs. 9.1 ± 5.0, P = 0.007), breast cancer (11.1 ± 6.8 vs. 4.1 ± 2.2, P < 0.001), colon cancer (13.8 ± 2.2 vs. 7.6 ± 1.7, P = 0.001), hepatocellular carcinoma (9.3 ± 3.5 vs. 4.7 ± 1.3, P = 0.01), head and neck cancer (11.3 ± 3.5 vs. 7.6 ± 5.5, P = 0.04), and pancreatic adenocarcinoma (7.4 ± 1.8 vs. 3.7 ± 1.0, P = 0.01). The total-body effective dose was estimated at 1.16E-02 mSv/MBq, with the greatest absorbed organ dose in the urinary bladder wall (9.98E-02 mGy/MBq). Conclusion: 68Ga-FAP-2286 biodistribution, dosimetry, and tumor uptake were similar to those of previously reported FAPI compounds. Additionally,68Ga-FAP-2286 PET had consistently higher uptake than 18F-FDG PET. These results are especially promising in the setting of small-volume disease and differentiating tumor from inflammatory uptake.
Collapse
Affiliation(s)
- Brad Kline
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robin Cumming Ippisch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jessa Castillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul R Aggarwal
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robin Kate Kelley
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Michelle Melisko
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Hope S Rugo
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Victoria Wang
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California; and
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
| |
Collapse
|
29
|
Liu L, Zhong J, Zhang Z, Ye X, Wang X, Liu S, Zhang Z. Preclinical study and first-in-human imaging of [ 18F]FAP-2286, and comparison with 2-[ 18F]FDG PET/CT in various cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:2012-2022. [PMID: 38326656 DOI: 10.1007/s00259-024-06626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Fibroblast-activated protein (FAP) is highly expressed in cancer-associated fibroblasts (CAFs) of many solid cancers, but low or absent in normal tissues. Our study aimed to develop a novel FAP-specific tracer, namely [18F]FAP-2286, and evaluated its performance in comparison with well-established agents such as [18F]FAPI-42 and [68Ga]Ga-FAP-2286 in preclinical research, as well as 2-[18F]FDG in pilot clinical study. METHODS [18F]FAP-2286 was manually synthesized in accordance with Good Manufacturing Practice (GMP). Subsequent investigations encompassed cell uptake, competitive binding affinity, internalization and efflux assays using HT-1080hFAP cell lines. PET imaging and biodistribution studies were conducted in HEK-293ThFAP, A549hFAP, HT-1080hFAP tumor-bearing mice as well as HEK-293T, A549 and HT-1080 control groups. Furthermore, clinical evaluation of [18F]FAP-2286 was performed in fifteen patients with various cancers compared to 2-[18F]FDG PET. RESULTS The radiolabeling yield of [18F]FAP-2286 was 30.53 ± 5.20%, with a radiochemical purity exceeding 97%. In cell assays, [18F]FAP-2286 showed specific uptake, high internalization fraction and low cellular efflux. Rapid tumor uptake and satisfactory tumor retention was observed on micro-PET imaging and cancer patients. Meanwhile, the clinical research demonstrated that [18F]FAP-2286 may represent an alternative for low glucose-metabolism malignant tumors PET imaging such as gastric cancers. CONCLUSION [18F]FAP-2286 showed superior imaging quality including rapid and high target uptake and satisfactory retention in both tumor-bearing mice and cancer patients. It may emerge as a promising candidate for early or delayed phase imaging and 2-[18F]FDG non-avid cancers PET scan.
Collapse
Affiliation(s)
- Lifang Liu
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoting Ye
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Zhanwen Zhang
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
30
|
Kastrati K, Nakuz TS, Kulterer OC, Geßl I, Simader E, Mrak D, Bonelli M, Kiener HP, Prayer F, Prosch H, Aletaha D, Langsteger W, Traub-Weidinger T, Blüml S, Lechner-Radner H, Hacker M, Mandl P. FAPi PET/CT for assessment and visualisation of active myositis-related interstitial lung disease: a prospective observational pilot study. EClinicalMedicine 2024; 72:102598. [PMID: 38633577 PMCID: PMC11019096 DOI: 10.1016/j.eclinm.2024.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Background Interstitial lung disease (ILD) is a common manifestation of idiopathic inflammatory myopathies (IIM) and a substantial contributor to hospitalisation, increased morbidity, and mortality. In-vivo evidence of ongoing tissue remodelling in IIM-ILD is scarce. We aimed to evaluate fibroblast activation in lungs of IIM-patients and control individuals using ⁶⁸Ga-labelled inhibitor of Fibroblast-Activation-Protein (FAPi) based positronic emission tomography and computed tomography imaging (PET/CT). Methods In this prospective observational pilot study, consecutive patients with IIM and participants without rheumatic conditions or ILD serving as a control group were recruited at the Medical University of Vienna, Austria, and underwent FAPi PET/CT imaging. Standard-of-care procedures including clinical examination, assessment of severity of dyspnoea, high-resolution computed tomography (HR-CT), and pulmonary function testing (PFT) were performed on all patients with IIM at baseline and for patients with IIM-ILD at follow-up of 12 months. Baseline pulmonary FAPi-uptake was assessed by the maximum (SUVmax) and mean (SUVmean) standardized uptake values (SUV) over the whole lung (wl). SUV was corrected for blood pool background activity and target-to-background ratios (TBR) were calculated. We compared pulmonary FAPi-uptake between patients with IIM-ILD and those without ILD, as well as controls, and correlated baseline FAP-uptake with standard diagnostic tools such as HR-CT and PFT. For predictive implications, we investigated whether patients with IIM and progressive ILD exhibited higher baseline FAPi-uptake compared to those with stable ILD. Metrics are reported as mean with standard deviation (±SD). Findings Between November 16, 2021 and October 10, 2022, a total of 32 patients were enrolled in the study. Three participants from the control group were excluded due to cardiopulmonary disease. In individuals with IIM-ILD (n = 14), wlTBRmax and wlTBRmean were significantly increased as compared with both non-ILD-IIM patients (n = 5) and the control group (n = 16): wlTBRmax: 2.06 ± 1.04 vs. 1.04 ± 0.22 (p = 0.019) and 1.08 ± 0.19 (p = 0.0012) and wlTBRmean: 0.45 ± 0.19 vs. 0.26 ± 0.06 (p = 0.025) and 0.27 ± 0.07 (p = 0.0024). Similar values were observed in wlTBRmax or wlTBRmean between non-ILD IIM patients and the control group. Patients with progressive ILD displayed significantly enhanced wlTBRmax and wlTBRmean values at baseline compared to patients with stable ILD: wlTBRmax: 1.30 ± 0.31 vs. 2.63 ± 1.04 (p = 0.0084) and wlTBRmean: 0.32 ± 0.08 vs. 0.55 ± 0.19 (p = 0.021). Strong correlations were found between FAPi-uptake and disease extent on HR-CT (wlTBRmax: R = 0.42, p = 0.07; wlTBRmean: R = 0.56, p = 0.013) and severity of respiratory symptoms determined by the New York Heart Association (NYHA) classification tool (wlTBRmax: R = 0.52, p = 0.022; wlTBRmean: R = 0.59, p = 0.0073). Further, pulmonary FAPi-uptake showed inverse correlation with forced vital capacity (FVC) (wlTBRmax: R = -0.56, p = 0.012; wlTBRmean: R = -0.64, p = 0.0033) and diffusing capacity of the lungs for carbon monoxide (DLCO) (wlTBRmax: R = -0.52, p = 0.028; wlTBRmean: R = -0.68, p = 0.0017). Interpretation Our study demonstrates higher fibroblast activation in patients with IIM-ILD compared to non-ILD patients and controls. Intensity of pulmonary FAPi accumulation was associated with progression of ILD. Considering that this study was carried out on a small population, FAPi PET/CT may serve as a useful non-invasive tool for risk stratification of lung disease in IIM. Funding The Austrian Research Fund.
Collapse
Affiliation(s)
- Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas S. Nakuz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oana C. Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Irina Geßl
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Simader
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Mrak
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hans Peter Kiener
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Prayer
- Division of General and Paediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Division of General and Paediatric Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Werner Langsteger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helga Lechner-Radner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Mandl
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Banihashemian SS, Divband G, Pirayesh E, Nikkholgh B, Amini H, Shahrnoy AA, Nami R, Akbari ME. [ 68Ga]Ga-FAP-2286, a novel promising theragnostic approach for PET/CT imaging in patients with various type of metastatic cancers. Eur J Nucl Med Mol Imaging 2024; 51:1981-1988. [PMID: 38376804 DOI: 10.1007/s00259-024-06635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Fibroblast activation protein (FAP) has emerged as a promising target for diagnosis and therapeutic intervention due to high expression and accumulation in the stromal compartments of a variety of malignant tumors. FAP-2286 utilizes cyclic peptides with FAP-binding characteristics to enhance the retention of the imaging agent within tumors, in contrast to the small-molecule FAP inhibitors (FAPI) like FAPI-04/46. The aim of this study was to quantify the tumor uptake of [68Ga] Gallium-FAP-2286 within primary solid tumors, adjacent excised tissues, and metastatic lesions. METHODS In this prospective study, 21 patients (average age 51.9) with various diagnoses of remaining and metastatic cancers participated. Among them, six had metastatic sarcoma, and 14 had adenocarcinoma, including eight breast, two rectum, two lung, two pancreas, and one thyroid cases. The patients underwent a [68Ga]Ga-FAP-2286 PET/CT scan. An hour post-administration of [68Ga]Ga-FAP-2286, a visual assessment of whole body scans and semi-quantification of the PET/CT results were carried out. The standardized uptake values (SUV)max of [68Ga]Ga-FAP-2286 in tumor lesions and the tumor-to-background ratio (TBR) were then calculated. RESULTS The vital signs of the patients, such as heart rate, blood pressure, and temperature, were observed before, during, and after the diagnostic procedure during the 4-h follow-up. All individuals underwent the [68Ga]Ga-FAP-2286 PET/CT scans without any signs of drug-associated pharmacological effects. The PET/CT scans displayed substantial absorption of [68Ga]Ga-FAP-2286 in tumor lesions in all patients (100% (21/21)). Irrespective of the tumors' origins (epithelial or mesothelium) and whether they exhibited local recurrence, distant recurrence, or metastatic lesions, the PET/CT scans revealed the uptake of [68Ga]Ga-FAP-2286 in these lesions. CONCLUSION Overall, these data suggest that [68Ga]Ga-FAP-2286 is a promising FAP derivative for efficient metastatic cancer diagnosis and being considered as a potential compound for therapeutic application in patients with advanced metastatic cancers.
Collapse
Affiliation(s)
| | | | - Elahe Pirayesh
- Department of Nuclear Medicine, School of Medicine, Shohada'E Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Liu N, Wan Q, Wu X, Zhao T, Jakobsson V, Yuan H, Chen X, Zhang J, Zhang W. A comparison of [ 18F]AlF- and 68Ga-labeled dual targeting heterodimer FAPI-RGD in malignant tumor: preclinical evaluation and pilot clinical PET/CT imaging. Eur J Nucl Med Mol Imaging 2024; 51:1685-1697. [PMID: 38246909 DOI: 10.1007/s00259-023-06587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Due to the heterogeneity of tumors, strategies to improve the effectiveness of dual-targeting tracers in tumor diagnostics have been intensively practiced. In this study, the radiolabeled [18F]AlF-NOTA-FAPI-RGD (denoted as [18F]AlF-LNC1007), a dual-targeting heterodimer tracer targeting both fibroblast activation protein (FAP) and integrin αvβ3 to enhance specific tumor uptake and retention, was synthesized and evaluated. The tracer was compared with [68Ga]Ga-LNC1007 in preclinical and clinical settings. METHODS The preparation of [18F]AlF- and 68Ga-labeled FAPI-RGD was carried out with an optimized protocol. The stability was tested in PBS and fetal bovine serum (FBS). Cellular uptake and in vivo distribution of the two products were compared and carried out on the U87MG cell line and its xenograft model. The safety and dosimetry of [18F]AlF-LNC1007 PET/CT scan were evaluated in six patients with malignant tumors. RESULTS Two radiolabeling protocols of [18F]AlF-/[68Ga]Ga-LNC1007 were developed and optimized to give a high yield of tracers with good stability. In vivo microPET images showed that the two tracers exhibited comparable pharmacokinetic characteristics, with high tumor uptake and prolonged tumor retention. In vivo distribution data showed that the target-to-non-target ratios of [18F]AlF-LNC1007 were similar to[68Ga]Ga-LNC1007. A total of six patients underwent [18F]AlF-LNC1007 PET/CT evaluation while two had head-to-head [18F]FDG PET/CT scans. The total body effective dose was 9.94E-03 mSv/MBq. The biodistribution curve showed optimal normal organ uptake with high tumor uptake and long retention of up to 3h p.i., and notably, the tumor-to-background ratio increased over time. CONCLUSION We successfully prepared an [18F]AlF-LNC1007 dual-targeting PET probe with comparable performances as [68Ga]Ga-LNC1007. With prolonged tumor retention and tumor specificity, it produced good imaging quality in preclinical and clinical translational studies, indicating that [18F]AlF-LNC1007 is a promising non-invasive tracer for detecting tumors expressing FAP and/or integrin avβ3, with the prospect of clinical implementation.
Collapse
Affiliation(s)
- Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qiang Wan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoming Wu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Hongmei Yuan
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, 646000, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), National University of Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
33
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
34
|
Sun X, Wu Y, Wang X, Gao X, Zhang S, Sun Z, Liu R, Hu K. Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals. Pharmaceutics 2024; 16:345. [PMID: 38543239 PMCID: PMC10974899 DOI: 10.3390/pharmaceutics16030345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2025] Open
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Yuxuan Wu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| | - Zhicheng Sun
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Ruping Liu
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China; (X.S.); (Y.W.); (Z.S.)
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.W.); (X.G.); (S.Z.)
| |
Collapse
|
35
|
Liu X, Li D, Ma T, Luo X, Peng Y, Wang T, Zuo C, Cai J. Autophagy inhibition improves the targeted radionuclide therapy efficacy of 131I-FAP-2286 in pancreatic cancer xenografts. J Transl Med 2024; 22:156. [PMID: 38360704 PMCID: PMC10870561 DOI: 10.1186/s12967-024-04958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSES Radiotherapy can induce tumor cell autophagy, which might impair the antitumoral effect. This study aims to investigate the effect of autophagy inhibition on the targeted radionuclide therapy (TRT) efficacy of 131I-FAP-2286 in pancreatic cancer. METHODS Human pancreatic cancer PANC-1 cells were exposed to 131I-FAP-2286 radiotherapy alone or with the autophagy inhibitor 3-MA. The autophagy level and proliferative activity of PANC-1 cells were analyzed. The pancreatic cancer xenograft-bearing nude mice were established by the co-injection of PANC-1 cells and pancreatic cancer-associated fibroblasts (CAFs), and then were randomly divided into four groups and treated with saline (control group), 3-MA, 131I-FAP-2286 and 131I-FAP-2286 + 3-MA, respectively. SPECT/CT imaging was performed to evaluate the bio-distribution of 131I-FAP-2286 in pancreatic cancer-bearing mice. The therapeutic effect of tumor was evaluated by 18F-FDG PET/CT imaging, tumor volume measurements, and the hematoxylin and eosin (H&E) staining, and immunohistochemical staining assay of tumor tissues. RESULTS 131I-FAP-2286 inhibited proliferation and increased the autophagy level of PANC-1 cells in a dose-dependent manner. 3-MA promoted 131I-FAP-2286-induced apoptosis of PANC-1 cells via suppressing autophagy. SPECT/CT imaging of pancreatic cancer xenograft-bearing nude mice showed that 131I-FAP-2286 can target the tumor effectively. According to 18F-FDG PET/CT imaging, the tumor growth curves and immunohistochemical analysis, 131I-FAP-2286 TRT was capable of suppressing the growth of pancreatic tumor accompanying with autophagy induction, but the addition of 3-MA enabled 131I-FAP-2286 to achieve a better therapeutic effect along with the autophagy inhibition. In addition, 3-MA alone did not inhibit tumor growth. CONCLUSIONS 131I-FAP-2286 exposure induces the protective autophagy of pancreatic cancer cells, and the application of autophagy inhibitor is capable of enhancing the TRT therapeutic effect.
Collapse
Affiliation(s)
- Xingyu Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Danni Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Tianbao Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ye Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Koshkin VS, Kumar V, Kline B, Escobar D, Aslam M, Cooperberg MR, Aggarwal RR, de Kouchkovsky I, Chou J, Meng MV, Friedlander T, Porten S, Hope TA. Initial Experience with 68Ga-FAP-2286 PET Imaging in Patients with Urothelial Cancer. J Nucl Med 2024; 65:199-205. [PMID: 38212070 DOI: 10.2967/jnumed.123.266390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Improved imaging modalities are needed to accurately stage patients with muscle-invasive bladder cancer (MIBC) and metastatic urothelial carcinoma. Imaging with small-molecule ligands or inhibitors of fibroblast activation protein (FAP) is a promising modality that has demonstrated initial efficacy across a broad range of tumors. We present our experience with the novel FAP-peptide binder 68Ga-FAP-2286 in patients with MIBC. Methods: Patients with histopathologically confirmed bladder cancer who had either localized disease at diagnosis (localized cohort, n = 13) or known metastatic disease (metastatic cohort, n = 8) were imaged with 68Ga-FAP-2286 PET as part of a clinical trial (NCT04621435). The SUVmax of 68Ga-FAP-2286 PET-positive lesions and lesion size were documented. In patients who had available 18F-FDG PET performed within 45 d of 68Ga-FAP-2286 PET (n = 5), uptake on the 2 scans was compared. When there was a discrepancy between imaging modalities on retrospective review, biopsy of suggestive lesions was performed as the standard of care. Results: In the metastatic and localized cohorts, 36 and 18 68Ga-FAP-2286-avid lesions, respectively, were identified across multiple anatomic locations, including lymph nodes, visceral metastases, and bones. Fourteen of 36 lesions in the metastatic cohort and 14 of 18 lesions in the localized cohort were lymph nodes measuring less than 1 cm. Among lesions measuring less than 0.5 cm, 0.5-1 cm, and more than 1 cm, average SUVmax was 5.2 ± 2.6, 9.6 ± 3.7, and 13.0 ± 4.3, respectively, in the metastatic cohort and 10.5 ± 5.1, 10.8 ± 5.7, and 9.9 ± 5.4, respectively, in the localized cohort. Five patients had 18F-FDG PET available for comparison. The average SUVmax for lesions avid on 68Ga-FAP-2286 PET and 18F-FDG PET was 9.9 ± 3.4 versus 4.2 ± 1.9, respectively (n = 16 lesions). For 3 patients in the localized cohort, 68Ga-FAP-2286 PET informed clinical management, including identification of both false-positive findings on 18F-FDG PET and false-negative findings on conventional CT. Conclusion: 68Ga-FAP-2286 imaging is highly sensitive in patients with urothelial cancer and is effective in identifying metastatic lesions across a variety of anatomic sites, including subcentimeter lymph nodes that would not have raised suspicion on conventional scans. This novel imaging modality may inform clinical decision-making in patients with MIBC both by refining local nodal staging and by defining metastatic disease that would otherwise be undetectable on conventional imaging.
Collapse
Affiliation(s)
- Vadim S Koshkin
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California;
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| | - Vipul Kumar
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Brad Kline
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Domenique Escobar
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Matthew R Cooperberg
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Rahul R Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| | - Ivan de Kouchkovsky
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| | - Jonathan Chou
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| | - Maxwell V Meng
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Terence Friedlander
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| | - Sima Porten
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
37
|
Greifenstein L, Gunkel A, Hoehne A, Osterkamp F, Smerling C, Landvogt C, Mueller C, Baum RP. 3BP-3940, a highly potent FAP-targeting peptide for theranostics - production, validation and first in human experience with Ga-68 and Lu-177. iScience 2023; 26:108541. [PMID: 38089587 PMCID: PMC10711456 DOI: 10.1016/j.isci.2023.108541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 06/24/2024] Open
Abstract
Hardly any new tracers attracted more attention in nuclear medicine in the last couple of years than radiolabeled fibroblast activation protein inhibitors (FAPi's). Molecules targeting cancer-associated fibroblasts (CAFs) or disease-associated fibroblasts in benign disorders (DAFs) gave rise to a new class of radiopharmaceuticals widely applicable for imaging and with the desired use as therapeutic compounds. Despite displaying benefits in diagnostic sensitivity over FDG, most FAP-targeting compounds in today's clinical routine continue to lack therapeutic utility due to short tumor retention. In this study, we evaluated 3BP-3940, specifically designed for achieving prolonged tumor retention and remarkably low uptake in healthy tissues. We herein present the automated manufacturing of gallium-68 (Ga-68) and lutetium-177 (Lu-177)-labeled 3BP-3940, their respective in vitro stability, validation of an automated production process, and validation of an analytical HPLC method for quality control. Finally, we give a first insight into the clinical utility of the two compounds.
Collapse
Affiliation(s)
- Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Annika Gunkel
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | | | | | | | - Christian Landvogt
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Corinna Mueller
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| |
Collapse
|
38
|
Li X, Wang N, Liu Y, Li W, Bai X, Liu P, He CY. Backbone N-methylation of peptides: Advances in synthesis and applications in pharmaceutical drug development. Bioorg Chem 2023; 141:106892. [PMID: 37776681 DOI: 10.1016/j.bioorg.2023.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Peptide-based drugs have garnered considerable attention in recent years owing to their increasingly crucial role in the treatment of diverse diseases. However, the limited pharmacokinetic properties of peptides have hindered their full potential. One prominent strategy for enhancing the druggability of peptides is N-methylation, which involves the addition of a methyl group to the nitrogen atom of the peptide backbone. This modification significantly improves the stability, bioavailability, receptor binding affinity and selectivity of peptide drug candidates. In this review, we provide a comprehensive overview of the advancements in synthetic methods for N-methylated peptide synthesis, as well as the associated limitations. Moreover, we explore the versatile effects of N-methylation on various aspects of peptide properties. Furthermore, we emphasize the efforts dedicated to N-methylated peptide pharmaceuticals that have successfully obtained marketing approval.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Ningchao Wang
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yuhang Liu
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Weipiao Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
39
|
Li D, Li X, Li J, Wang Y, Tan F, Li X. Development of a fibroblast activation protein-targeted PET/NIR dual-modality probe and its application in head and neck cancer. Front Bioeng Biotechnol 2023; 11:1291824. [PMID: 38026901 PMCID: PMC10654779 DOI: 10.3389/fbioe.2023.1291824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: The combination of near-infrared (NIR) and positron emission tomography (PET) imaging presents an opportunity to utilize the benefits of dual-modality imaging for tumor visualization. Based on the observation that fibroblast activation protein (FAP) is upregulated in cancer-associated fibroblasts (CAFs) infiltrating all solid tumors, including head and neck squamous cell carcinoma (HNSCC), we developed the novel PET/NIR probe [68Ga]Ga-FAP-2286-ICG. Preclinically, the specificity, biodistribution and diagnostic properties were evaluated. Methods: Cell uptake assays were completed with the U87MG cell to evaluate the specificity of the [68Ga]Ga-FAP-2286-ICG. The tumor-targeting efficiency, biodistribution and optimal imaging time window of the [68Ga]Ga-FAP-2286-ICG were studied in mice bearing U87MG xenografts. HNSCC tumor-bearing mice were used to evaluate the feasibility of [68Ga]Ga-FAP-2286-ICG for tumor localization and guided surgical resection of HNSCC tumors. Results: The in vitro experiments confirmed that [68Ga]Ga-FAP-2286-ICG showed good stability, specific targeting of the probe to FAP, and the durable retention effect in high-expressing FAP tumors U87MG cell. Good imaging properties such as good tumor uptake, high tumor-to-background ratios (5.44 ± 0.74) and specificity, and tumor contouring were confirmed in studies with mice bearing the U87MG xenograft. PET/CT imaging of the probe in head and neck cancer-bearing mice demonstrated specific uptake of the probe in the tumor with a clear background. Fluorescence imaging further validated the value of the probe in guiding surgical resection and achieving precise removal of the tumor and residual lesions. Conclusion: In a preclinical model, these attractive [68Ga]Ga-FAP-2286-ICG PET/NIR imaging acquired in head and neck cancer make it a promising FAP-targeted multimodal probe for clinical translation.
Collapse
Affiliation(s)
- Danni Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Al-Ibraheem A, Alyasjeen SF, Abdlkadir AS, Sheikha AA. [ 68Ga]Ga-DOTA-FAPI-04 PET/CT depicts metastases from medullary thyroid cancer that [ 68Ga]Ga-DOTATOC PET/CT missed. Eur J Nucl Med Mol Imaging 2023; 50:4112-4113. [PMID: 37490080 DOI: 10.1007/s00259-023-06348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street Al-Jubeiha, Amman, 11941, Jordan.
- Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, 11942, Jordan.
| | - Salem Fandi Alyasjeen
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street Al-Jubeiha, Amman, 11941, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street Al-Jubeiha, Amman, 11941, Jordan
| | - Areej Abu Sheikha
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, 11941, Jordan
| |
Collapse
|
41
|
Pedrazzoli S. Currently Debated Topics on Surgical Treatment of Pancreatic Ductal Adenocarcinoma: A Narrative Review on Surgical Treatment of Borderline Resectable, Locally Advanced, and Synchronous or Metachronous Oligometastatic Tumor. J Clin Med 2023; 12:6461. [PMID: 37892599 PMCID: PMC10607532 DOI: 10.3390/jcm12206461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previously considered inoperable patients (borderline resectable, locally advanced, synchronous oligometastatic or metachronous pancreatic adenocarcinoma (PDAC)) are starting to become resectable thanks to advances in chemo/radiotherapy and the reduction in operative mortality. METHODS This narrative review presents a chosen literature selection, giving a picture of the current state of treatment of these patients. RESULTS Neoadjuvant therapy (NAT) is generally recognized as the treatment of choice before surgery. However, despite the increased efficacy, the best pathological response is still limited to 10.9-27.9% of patients. There are still limited data on the selection of possible NAT responders and how to diagnose non-responders early. Multidetector computed tomography has high sensitivity and low specificity in evaluating resectability after NAT, limiting the resection rate of resectable patients. Ca 19-9 and Positron emission tomography are giving promising results. The prediction of early recurrence after a radical resection of synchronous or metachronous metastatic PDAC, thus identifying patients with poor prognosis and saving them from a resection of little benefit, is still ongoing, although some promising data are available. CONCLUSION In conclusion, high-level evidence demonstrating the benefit of the surgical treatment of such patients is still lacking and should not be performed outside of high-volume centers with interdisciplinary teams of surgeons and oncologists.
Collapse
|
42
|
Rezaei S, Gharapapagh E, Dabiri S, Heidari P, Aghanejad A. Theranostics in targeting fibroblast activation protein bearing cells: Progress and challenges. Life Sci 2023; 329:121970. [PMID: 37481033 PMCID: PMC10773987 DOI: 10.1016/j.lfs.2023.121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Sahar Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharapapagh
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Dabiri
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Heidari
- Departments of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Ruan D, Zhao L, Cai J, Xu W, Sun L, Li J, Zhang J, Chen X, Chen H. Evaluation of FAPI PET imaging in gastric cancer: a systematic review and meta-analysis. Theranostics 2023; 13:4694-4710. [PMID: 37649615 PMCID: PMC10465231 DOI: 10.7150/thno.88335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose: Recent studies suggest that 68Ga-FAPI PET/CT demonstrated superiority over 18F-FDG PET/CT in the evaluation of various cancer types, especially in gastric cancer (GC). By comprehensively reviewing and analysing the differences between 68Ga-FAPI and 18F-FDG in GC, some evidence is provided to foster the broader clinical application of FAPI PET imaging. Methods: In this review, studies published up to July 3, 2023, that employed radionuclide labelled FAPI as a diagnostic radiotracer for PET in GC were analysed. These studies were sourced from both the PubMed and Web of Science databases. Our statistical analysis involved a bivariate meta-analysis of the diagnostic data and a meta-analysis of the quantitative metrics. These were performed using R language. Results: The meta-analysis included 14 studies, with 527 patients, of which 358 were diagnosed with GC. Overall, 68Ga-FAPI showed higher pooled sensitivity (0.84 [95% CI 0.67-0.94] vs. 0.46 [95% CI 0.32-0.60]), specificity (0.91 [95% CI 0.76-0.98] vs. 0.88 [95% CI 0.74-0.96]) and area under the curve (AUC) (0.92 [95% CI 0.77-0.98] vs. 0.52 [95% CI 0.38-0.86]) than 18F-FDG. The evidence showed superior pooled sensitivities of 68Ga-FAPI PET over 18F-FDG for primary tumours, local recurrence, lymph node metastases, distant metastases, and peritoneal metastases. Furthermore, 68Ga-FAPI PET provided higher maximum standardized uptake value (SUVmax) and tumour-to-background ratios (TBR). For bone metastases, while 68Ga-FAPI PET demonstrated slightly lower patient-based pooled sensitivity (0.93 vs. 1.00), it significantly outperformed 18F-FDG in the lesion-based analysis (0.95 vs. 0.65). However, SUVmax (mean difference [MD] 1.79 [95% CI -3.87-7.45]) and TBR (MD 5.01 [95% CI -0.78-10.80]) of bone metastases showed no significant difference between 68Ga-FAPI PET/CT and 18F-FDG PET/CT. Conclusion: Compared with 18F-FDG, 68Ga-FAPI PET imaging showed improved diagnostic accuracy in the evaluation of GC. It can be effectively applied to the early diagnosis, initial staging, and detection of recurrence/metastases of GC. 68Ga-FAPI may have the potential of replacing 18F-FDG in GC in future applications.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
- Department of Medical Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
44
|
Song L, Zan C, Liang Z, Chen X, Li J, Ren N, Shi Y, Zhang M, Lan L, Li H, Yan M, Li J, Li S, Wu Z. Potential Value of FAPI PET/CT in the Detection and Treatment of Fibrosing Mediastinitis: Preclinical and Pilot Clinical Investigation. Mol Pharm 2023; 20:4307-4318. [PMID: 37486106 DOI: 10.1021/acs.molpharmaceut.3c00452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fibrosing mediastinitis (FM) is a rare proliferative disease within the mediastinum that leads to pulmonary hypertension, which has been regarded as a major cause of death. This study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-PET/CT in the integration of diagnosis and treatment of FM through targeting FAPI in fibrosis rats and provide a theoretical basis for clinical management of FM patients. By performing a 18F-FAPI PET/CT scan, the presence of FAPI-avid in the fibrotic lesion was determined. Through a fibrosis rat model, 18F-FAPI-74 was used for lesion imaging and 177Lu-FAPI-46 was utilized to investigate the potential therapeutic effect on FM in vivo. In addition, biodistribution analysis and radiation dosimetry were carried out. With the 177Lu-FAPI-46 pharmacokinetic data of rats as the input, the estimated dose for female adults was computed, which can provide some useful information for the safe application of radiolabeled FAPI in the detection and treatment of FM in patients. Then, major findings on the use of FAPI PET/CT and SPECT/CT in FM were presented. 18F-FAPI-74 showed a high-level uptake in FM lesions of patients (SUVmax 7.94 ± 0.26), which was also observed in fibrosis rats (SUVmax 2.11 ± 0.23). Consistently, SPECT/CT imaging of fibrosis rats also revealed that 177Lu-FAPI-46-avid was active for up to 60 h in fibrotic lesions. In addition to this robust diagnostic performance, a possible therapeutic impact was evaluated as well. It turned out that no spontaneous healing of lesions was observed in the control group, whereas there was complete healing on day 9, day 11, and day 14 in the 30, 100, and 300 MBq groups, respectively. With a significant difference in the free of event rate in the Kaplan-Meier curve among four groups (P < 0.001), a dose of 300 MBq displayed the best therapeutic effect, and no obvious damage was observed in the kidney. Furthermore, organ-absorbed doses and an effective dose (0.4320 mSv/MBq) of 177Lu-FAPI-46 presumed for patients were assumed to give a preliminary indication of its safe use in clinical practice. In conclusion, 18F-FAPI-46 PET/CT can be a potentially valuable tool for the diagnosis of FM. Of note, 177Lu-FAPI-46 may be a novel and safe radiolabeled reagent for the integration of diagnosis and treatment of FM.
Collapse
Affiliation(s)
- Liwei Song
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
- Department of General Practice, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhuang Liang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Xufu Chen
- CAEA Center of Excellence on Nuclear Technology Applications for Nonclinical Evaluation for Radiopharmaceutical, Taiyuan 030001, China
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan 030001, China
| | - Jiahe Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Ning Ren
- Department of General Surgery, The Fifth People's Hospital of Datong, Datong 037006, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Mengyuan Zhang
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Lizhen Lan
- Department of General Practice, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Huiling Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Min Yan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
| | - Jianguo Li
- CAEA Center of Excellence on Nuclear Technology Applications for Nonclinical Evaluation for Radiopharmaceutical, Taiyuan 030001, China
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
45
|
Qi W, Jin L, Wu C, Liao H, Zhang M, Zhu Z, Han W, Chen Q, Ding C. Treatment with FAP-targeted zinc ferrite nanoparticles for rheumatoid arthritis by inducing endoplasmic reticulum stress and mitochondrial damage. Mater Today Bio 2023; 21:100702. [PMID: 37408696 PMCID: PMC10319325 DOI: 10.1016/j.mtbio.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammatory disease characterized by the proliferation of fibroblast-like synoviocytes (FLS), pannus development, cartilage, and bone degradation, and, eventually, loss of joint function. Fibroblast activating protein (FAP) is a particular product of activated FLS and is highly prevalent in RA-derived fibroblast-like synoviocytes (RA-FLS). In this study, zinc ferrite nanoparticles (ZF-NPs) were engineered to target FAP+ (FAP positive) FLS. ZF-NPswere discovered to better target FAP+ FLS due to the surface alteration of FAP peptide and to enhance RA-FLS apoptosis by activating the endoplasmic reticulum stress (ERS) system via the PERK-ATF4-CHOP, IRE1-XBP1 pathway, and mitochondrial damage of RA-FLS. Treatment with ZF-NPs under the influence of an alternating magnetic field (AMF) can significantly amplify ERS and mitochondrial damage via the magnetocaloric effect. It was also observed in adjuvant-induced arthritis (AIA) mice that FAP-targeted ZF-NPs (FAP-ZF-NPs) could significantly suppress synovitis in vivo, inhibit synovial tissue angiogenesis, protect articular cartilage, and reduce M1 macrophage infiltration in synovium in AIA mice. Furthermore, treatment of AIA mice with FAP-ZF-NPs was found to be more promising in the presence of an AMF. These findings demonstrate the potential utility of FAP-ZF-NPs in the treatment of RA.
Collapse
Affiliation(s)
- Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cuixi Wu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hao Liao
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Menzies Institute for Medical Research, University of Tasmania, 7000, Hobart, Tasmania, Australia
| |
Collapse
|
46
|
Zukotynski KA, Gerbaudo VH. Understanding the Value of FAPI versus FDG PET/CT in Primary and Metastatic Lung Cancer. Radiology 2023; 308:e231768. [PMID: 37552076 DOI: 10.1148/radiol.231768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Affiliation(s)
- Katherine A Zukotynski
- From the Departments of Radiology and Medicine, McMaster University, 1200 Main St W, Room 1P11, Hamilton, ON, Canada L8N 3Z5 (K.A.Z.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (V.H.G.)
| | - Victor H Gerbaudo
- From the Departments of Radiology and Medicine, McMaster University, 1200 Main St W, Room 1P11, Hamilton, ON, Canada L8N 3Z5 (K.A.Z.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (V.H.G.)
| |
Collapse
|
47
|
Zhao L, Wen X, Xu W, Pang Y, Sun L, Wu X, Xu P, Zhang J, Guo Z, Lin Q, Chen X, Chen H. Clinical Evaluation of 68Ga-FAPI-RGD for Imaging of Fibroblast Activation Protein and Integrin α vβ 3 in Various Cancer Types. J Nucl Med 2023:jnumed.122.265383. [PMID: 37142301 PMCID: PMC10394316 DOI: 10.2967/jnumed.122.265383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023] Open
Abstract
Radiolabeled fibroblast activation protein (FAP) inhibitors (FAPIs) and Arg-Gly-Asp (RGD) peptides have been extensively investigated for imaging of FAP- and integrin αvβ3-positive tumors. In this study, a FAPI-RGD heterodimer was radiolabeled with 68Ga and evaluated in patients with cancer. We hypothesized that the heterodimer, recognizing both FAP and integrin αvβ3, would be advantageous because of its dual-receptor-targeting property. Methods: The effective dose of 68Ga-FAPI-RGD was evaluated in 3 healthy volunteers. The clinical feasibility of 68Ga-FAPI-RGD PET/CT was evaluated in 22 patients with various types of cancer, and the results were compared with those of 18F-FDG and 68Ga-FAPI-46. Results: 68Ga-FAPI-RGD was tolerated well, with no adverse events in any of the healthy volunteers or patients. The effective dose from 68Ga-FAPI-RGD PET/CT was 1.01 × 10-2 mSv/MBq. In clinical investigations with different types of cancer, the radiotracer uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in 68Ga-FAPI-RGD PET/CT were significantly higher than those in 18F-FDG PET/CT (primary tumors: SUVmax, 18.0 vs. 9.1 [P < 0.001], and TBR, 15.2 vs. 5.5 [P < 0.001]; lymph node metastases: SUVmax, 12.1 vs. 6.1 [P < 0.001], and TBR, 13.3 vs. 4.1 [P < 0.001]), resulting in an improved lesion detection rate and tumor delineation, particularly for the diagnosis of lymph node (99% vs. 91%) and bone (100% vs. 80%) metastases. 68Ga-FAPI-RGD PET/CT also yielded a higher radiotracer uptake and TBR than 68Ga-FAPI-46 PET/CT did. Conclusion: 68Ga-FAPI-RGD exhibited improved tumor uptake and TBR compared with 18F-FDG and 68Ga-FAPI PET/CT. This study demonstrated the safety and clinical feasibility of 68Ga-FAPI-RGD PET/CT for imaging of various types of cancer.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoming Wu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, China; and
| | - Pengfei Xu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore;
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China;
| |
Collapse
|