1
|
Woods JJ, Rigby A, Wacker JN, Arino T, Alvarenga Vasquez JV, Cosby A, Martin KE, Abergel RJ. Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy. J Med Chem 2025; 68:1682-1692. [PMID: 39752149 DOI: 10.1021/acs.jmedchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, p-SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules. This bifunctional chelator was prepared with a 26% overall yield in four steps and conjugated to the human epidermal growth factor receptor 2 targeting antibody, trastuzumab. The resulting immunoconjugate was labeled with [227Th]ThIV (pH 5.5, room temperature, 60 min) with ≥95% radiochemical yield and purity. The conjugate was also labeled with zirconium-89 (89Zr), which can be used for positron emission tomography imaging. The radiometal complexes were subsequently investigated for their biological stability. The results described here provide insight into ligand design strategies and optimization of chelators for the development of the next generation of 89Zr and 227Th radiopharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Rigby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | | | - Alexia Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kirsten E Martin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Duvenhage J, Kahts M, Summers B, Zeevaart JR, Ebenhan T. Highlighting New Research Trends on Zirconium-89 Radiopharmaceuticals Beyond Antibodies. Semin Nucl Med 2024; 54:801-811. [PMID: 39462691 DOI: 10.1053/j.semnuclmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Zirconium-89 (89Zr) is a cyclotron-produced positron-emitting radioisotope with a half-life of 3.27 days, which makes delayed or longitudinal imaging possible. It is a superior isotope for tracking particles over several days at a high sensitivity, resolution, and specificity. 89Zr-monoclonal antibodies (89Zr-mAb) have gained significant attention in the field of molecular imaging. However, the past decade has shown an avid increase in research concerning 89Zr-radiopharmaceuticals apart from 89Zr-mAb. In this article we highlight and discuss the status and challenges attributed to current preclinical and clinical investigations of 89Zr-radiopharmaceuticals developed beyond 89Zr-mAb, e.g., mAb-derived variants and macro-biomolecules, proteins, peptides, nanoparticles, and living cells.
Collapse
Affiliation(s)
- Janie Duvenhage
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Maryke Kahts
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Beverley Summers
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Jan Rijn Zeevaart
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa; Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; Department Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Ho KV, Tatum DS, Watkinson L, Carmack T, Jia F, Mascioni A, Maitz CA, Magda D, Anderson CJ. Single Chelator-Minibody Theranostic Agents for 89Zr PET Imaging and 177Lu Radiopharmaceutical Therapy of PSMA-Expressing Prostate Cancer. J Nucl Med 2024; 65:1435-1442. [PMID: 39142831 PMCID: PMC11372255 DOI: 10.2967/jnumed.124.267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
Here we describe an anti-prostate-specific membrane antigen (PSMA) minibody (IAB2MA) conjugated to an octadentate, macrocyclic chelator based on four 1-hydroxypyridin-2-one coordinating units (Lumi804 [L804]) labeled with 89Zr (PET imaging) and 177Lu (radiopharmaceutical therapy), with the goal of developing safer and more efficacious treatment options for prostate cancer. Methods: L804 was compared with the current gold standard chelators, DOTA and deferoxamine (DFO), conjugated to IAB2MA for radiolabeling with 177Lu and 89Zr in cell binding, preclinical biodistribution, imaging, dosimetry, and efficacy studies in the PSMA-positive PC3-PIP tumor-bearing mouse model of prostate cancer. Results: Quantitative radiolabeling (>99% radiochemical yield) of L804-IAB2MA with 177Lu or 89Zr was achieved at ambient temperature in under 30 min, comparable to 89Zr labeling of DFO-IAB2MA. In contrast, DOTA-IAB2MA was radiolabeled with 177Lu for 30 min at 37°C in approximately 90% radiochemical yield, requiring further purification. Using europium(III) as a luminescent surrogate, high binding affinity of Eu-L804-IAB2MA to PSMA was demonstrated in PC3-PIP cells (dissociation constant, 4.6 ± 0.6 nM). All 4 radiolabeled constructs showed significantly higher levels of internalization after 30 min in the PC3-PIP cells than in PSMA-negative PC3-FLU cells. The accumulation of 177Lu- and 89Zr-L804-IAB2MA in PC3-PIP tumors and all organs examined (i.e., heart, liver, spleen, kidney, muscle, salivary glands, lacrimal glands, carcass, and bone) was significantly lower than that of 177Lu-DOTA-IAB2MA and 89Zr-DFO-IAB2MA at 96 and 72 h after injection, respectively. Generally, SPECT/CT and PET/CT imaging data showed no significant difference in the SUVmean of the tumors or muscle between the radiotracers. Dosimetry analysis via both organ-level and voxel-level dose calculation methods indicated significantly higher absorbed doses of 177Lu-DOTA-IAB2MA in tumors, kidney, liver, muscle, and spleen than of 177Lu-L804-IAB2MA. PC3-PIP tumor-bearing mice treated with single doses of 177Lu-L804-IAB2MA (18.4 or 22.2 MBq) exhibited significantly prolonged survival and reduced tumor volume compared with unlabeled minibody control. No significant difference in survival was observed between groups of mice treated with 177Lu-L804-IAB2MA or 177Lu-DOTA-IAB2MA (18.4 or 22.2 MBq). Treatment with 177Lu-L804-IAB2MA resulted in lower absorbed doses in tumors and less toxicity than that of 177Lu-DOTA-IAB2MA. Conclusion: 89Zr- and 177Lu-L804-IAB2MA may be a promising theranostic pair for imaging and therapy of prostate cancer.
Collapse
Affiliation(s)
- Khanh-Van Ho
- Department of Chemistry, University of Missouri, Columbia, Missouri
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
| | | | - Lisa Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Terry Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Fang Jia
- ImaginAb Inc., Inglewood, California
| | | | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri
- MU Research Reactor, University of Missouri, Columbia, Missouri
| | | | - Carolyn J Anderson
- Department of Chemistry, University of Missouri, Columbia, Missouri;
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Department of Radiology, University of Missouri, Columbia, Missouri; and
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Wahl RL, Kahl B. The Rebirth of Radioimmunotherapy of Non-Hodgkin Lymphoma: The Phoenix of Nuclear Medicine? Semin Nucl Med 2024; 54:513-529. [PMID: 39019652 DOI: 10.1053/j.semnuclmed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
In Greek mythology, The Phoenix is an immortal bird that dies, but then achieves new life by rising from the ashes of its predecessor. Radioimmunotherapy (RIT) of B-cell Non-Hodgkin lymphoma (NHL) is a field which once began to fly high-with FDA approval of the anti-CD20 RITs Zevalin® and Bexxar® in 2002 and 2003 respectively, as safe and effective therapies of NHL. However, despite their therapeutic efficacy, Bexxar® was withdrawn from the market by the manufacturer in 2014 due to limited commercial demand and Zevalin® has had very limited to no availability of late. I-131 rituximab is used to a limited extent in Australia, India and other countries, as well. But has RIT of NHL been (perhaps prematurely) left for dead by many? Given the current great clinical and commercial interest in radiopharmaceutical therapies of cancer, notably PSMA and SSTR targeting agents in prostate and neuroendocrine cancers, can radioimmunotherapy of NHL-like the mythical Phoenix-now rise from its ashes in an even better form to fly higher, faster, farther and longer than before?
Collapse
Affiliation(s)
- Richard L Wahl
- Mallinckrodt Institute of Radiology, Department of Radiology and Radiation Oncology, Washington University School of Medicine in St. Louis.
| | - Brad Kahl
- Mallinckrodt Institute of Radiology, Department of Radiology and Radiation Oncology, Washington University School of Medicine in St. Louis; Department of Internal Medicine, Division of Hematology and Oncology, Washington University School of Medicine in St. Louis
| |
Collapse
|
5
|
Mangin F, Fonquernie O, Jewula P, Brandès S, Penouilh MJ, Bonnin Q, Vincent B, Espinosa E, Aubert E, Meyer M, Chambron JC. Combining Desferriferrioxamine B and 1-Hydroxy-2-Piperidone ((PIPO)H) to Chelate Zirconium. Solution Structure of a Model Complex of the [ 89Zr]Zr-DFOcyclo*-mAb Radioimmunoconjugate. Chempluschem 2024; 89:e202400062. [PMID: 38613508 DOI: 10.1002/cplu.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Indexed: 04/15/2024]
Abstract
89Zr-immunoPET is a hot topic as 89Zr cumulates the advantages of 64Cu and 124I without their drawbacks. We report the synthesis of a model ligand of a chiral bioconjugable tetrahydroxamic chelator combining the desferriferrioxamine B siderophore and 1-hydroxy-2-piperidone ((PIPO)H), a chiral cyclic hydroxamic acid derivative, and the study by NMR spectroscopy of its zirconium complex. Nuclear Overhauser effect measurements (ROESY) indicated that the complex exists in the form of two diastereomers, in 77 : 23 ratio, resulting from the combination of the central chiralities at the 3-C of the (PIPO)H component and at the Zr4+ cation. The 44 lowest energy structures out of more than 1000 configurations/conformations returned by calculations based on density functional theory were examined. Comparison of the ROESY data and the calculated interatomic H⋅⋅⋅H distances allowed us to select the most probable configuration and conformations of the major complex.
Collapse
Affiliation(s)
- Floriane Mangin
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Osian Fonquernie
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Marie-José Penouilh
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Quentin Bonnin
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Bruno Vincent
- Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | | | | | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
| | - Jean-Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR 6302 CNRS, Université de Bourgogne, 9, avenue Alain Savary, BP 47870, 21078, Dijon Cedex, France
- Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
6
|
Pougoue Ketchemen J, Njotu FN, Babeker H, Ahenkorah S, Tikum AF, Nwangele E, Henning N, Cleeren F, Fonge H. Effectiveness of [ 67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:2070-2084. [PMID: 38376808 DOI: 10.1007/s00259-024-06648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE To evaluate the imaging and therapeutic properties (theranostic) of 67Cu-labeled anti-human epidermal growth factor receptor II (HER2) monoclonal antibody trastuzumab against HER2-positive breast cancer (BC). METHODS We conjugated trastuzumab with p-SCN-Bn-NOTA, 3p-C-NETA-NCS, or p-SCN-Bn-DOTA, and radiolabeled with [67Cu]CuCl2. Immunoconjugate internalization was evaluated in BT-474, JIMT-1 and MCF-7 BC cells. In vitro stability was studied in human serum (HS) and Phosphate Buffered Saline (PBS). Flow cytometry, radioligand binding and immunoreactive fraction assays were carried out. ImmunoSPECT imaging of [67Cu]Cu-NOTA-trastuzumab was done in mice bearing BT-474, JIMT-1 and MCF-7 xenografts. Pharmacokinetic was studied in healthy Balb/c mice while dosimetry was done in both healthy Balb/c and in athymic nude mice bearing JIMT-1 xenograft. The therapeutic effectiveness of [67Cu]Cu-NOTA-trastuzumab was evaluated in mice bearing BT-474 and JIMT-1 xenografts after a single intravenous (i.v.) injection of ~ 16.8 MBq. RESULTS Pure immunoconjugates and radioimmunoconjugates (> 95%) were obtained. Internalization was HER2 density-dependent with highest internalization observed with NOTA-trastuzumab. After 5 days, in vitro stabilities were 97 ± 1.7%, 31 ± 6.2%, and 28 ± 4% in HS, and 79 ± 3.5%, 94 ± 1.2%, and 86 ± 2.3% in PBS for [67Cu]Cu-NOTA-trastuzumab, [67Cu]Cu-3p-C-NETA-trastuzumab and [67Cu]Cu-DOTA-trastuzumab, respectively. [67Cu]Cu-NOTA-trastuzumab was chosen for further evaluation. BT-474 flow cytometry showed low KD, 8.2 ± 0.2 nM for trastuzumab vs 26.5 ± 1.6 nM for NOTA-trastuzumab. There were 2.9 NOTA molecules per trastuzumab molecule. Radioligand binding assay showed a low KD of 2.1 ± 0.4 nM and immunoreactive fraction of 69.3 ± 0.9. Highest uptake of [67Cu]Cu-NOTA-trastuzumab was observed in JIMT-1 (33.9 ± 5.5% IA/g) and BT-474 (33.1 ± 10.6% IA/g) xenograft at 120 h post injection (p.i.). Effectiveness of the radioimmunoconjugate was also expressed as percent tumor growth inhibition (%TGI). [67Cu]Cu-NOTA-trastuzumab was more effective than trastuzumab against BT-474 xenografts (78% vs 54% TGI after 28 days), and JIMT-1 xenografts (90% vs 23% TGI after 19 days). Mean survival of [67Cu]Cu-NOTA-trastuzumab, trastuzumab and saline treated groups were > 90, 77 and 72 days for BT-474 xenografts, while that of JIMT-1 were 78, 24, and 20 days, respectively. CONCLUSION [67Cu]Cu-NOTA-trastuzumab is a promising theranostic agent against HER2-positive BC.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
7
|
Basuli F, Vasalatiy O, Shi J, Lane KC, Escorcia FE, Swenson RE. Preparation of a Zirconium-89 Labeled Clickable DOTA Complex and Its Antibody Conjugate. Pharmaceuticals (Basel) 2024; 17:480. [PMID: 38675440 PMCID: PMC11053460 DOI: 10.3390/ph17040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Kelly C. Lane
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| |
Collapse
|
8
|
Salih AK, Dominguez Garcia M, Raheem SJ, Ahiahonu WK, Price EW. DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based Radiopharmaceuticals. Inorg Chem 2023; 62:20806-20819. [PMID: 37751491 DOI: 10.1021/acs.inorgchem.3c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Zirconium-89-labeled monoclonal antibodies and other large macromolecules such as nanoparticles hold great promise as positron emission tomography imaging agents. In general, zirconium-89 is an ideal radionuclide for long-circulating vectors such as antibodies or nanoparticles. It is also a promising radionuclide for theranostic radiopharmaceuticals due to its suitable match in half-life with actinium-225, thorium-227, lutetium-177, and others. As such, demand for new and optimized bifunctional chelators for zirconium-89 continues to grow. Herein, we present the modular chelator DFO-Km, which is octadentate and features lysine as a modular amino acid linker. The modular amino acid linker can be changed to other natural or unnatural amino acids to access different bioconjugation chemistries, while the chelating portion is unchanged thus retaining identical metal ion coordination properties to DFO-Km. The epsilon-amine in the DFO-Km linker (lysine) was used to complete synthesis of a bifunctional derivative bearing a p-SCN-Ph moiety. The chelator DFO-Km includes a redesigned hydroxamic acid, which provides more flexibility for metal ion coordination relative to the monomer used in the previously published DFO-Em. Moreover, a set of comprehensive DFT calculations were performed to model and evaluate 16 geometric isomers of Zr-(DFO-Km), which suggested the complex would form the optimum cic-cis-trans-trans octadentate Zr(IV) coordination geometry with no aqua or hydroxide ligands present. The bifunctional derivative p-SCN-Ph-DFO-Km was compared directly with the commercially available p-SCN-Ph-DFO, and both underwent efficient conjugation to a nonspecific human serum antibody (IgG) to yield two model immunoconjugates. The behavior of [89Zr]Zr-DFO-Km-IgG was studied in healthy mice for 2 weeks and compared to an equivalent cohort injected with [89Zr]Zr-DFO-IgG as a clinical "gold standard" control. PET-CT and biodistribution results revealed higher stability of [89Zr]Zr-(DFO-Km)-IgG in vivo over [89Zr]Zr-DFO-IgG, as demonstrated by the significant reduction of zirconium-89 in the whole skeleton as visualized and quantified by PET-CT at 1, 3, 7, and 14 days post-injection. Using CT-gated regions of interest over these PET-CT images, the whole skeleton was selected and uptake values were measured at 14 days post-injection of 3.6 ± 0.9 (DFO) vs 1.9 ± 0.1 (DFO-Km) %ID/g (n = 4, * p = 0.02), which represents a ∼48% reduction in bone uptake with DFO-Km relative to DFO. Biodistribution experiments performed on these same mice following the 14 day imaging time point revealed bone (both tibia) uptake values of 3.7 ± 1.3 (DFO) vs 2.0 ± 0.6 (DFO-Km) %ID/g (n = 6, * p < 0.05), with the tibia uptake values in close agreement with whole-skeleton ROI PET-CT data. These results indicate that DFO-Km is an improved chelator for [89Zr]Zr4+ applications relative to DFO. The bifunctional chelator p-SCN-Ph-DFO-Km shows potential as a new chemical tool for creating bioconjugates using targeting vectors such as antibodies, peptides, and nanoparticles.
Collapse
Affiliation(s)
- Akam K Salih
- Radiopharmacology, Mariana Oncology, Woburn, Massachusetts 01801, United States
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - William K Ahiahonu
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| |
Collapse
|
9
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|