1
|
Pitot TM, Rapp JZ, Schulz F, Girard C, Roux S, Culley AI. Distinct and rich assemblages of giant viruses in Arctic and Antarctic lakes. ISME COMMUNICATIONS 2024; 4:ycae048. [PMID: 38800130 PMCID: PMC11128243 DOI: 10.1093/ismeco/ycae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
Giant viruses (GVs) are key players in ecosystem functioning, biogeochemistry, and eukaryotic genome evolution. GV diversity and abundance in aquatic systems can exceed that of prokaryotes, but their diversity and ecology in lakes, especially polar ones, remain poorly understood. We conducted a comprehensive survey and meta-analysis of GV diversity across 20 lakes, spanning polar to temperate regions, combining our extensive lake metagenome database from the Canadian Arctic and subarctic with publicly available datasets. Leveraging a novel GV genome identification tool, we identified 3304 GV metagenome-assembled genomes, revealing lakes as untapped GV reservoirs. Phylogenomic analysis highlighted their dispersion across all Nucleocytoviricota orders. Strong GV population endemism emerged between lakes from similar regions and biomes (Antarctic and Arctic), but a polar/temperate barrier in lacustrine GV populations and differences in their gene content could be observed. Our study establishes a robust genomic reference for future investigations into lacustrine GV ecology in fast changing polar environments.
Collapse
Affiliation(s)
- Thomas M Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- IBIS Institute of Integrative Biology and Systems, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Josephine Z Rapp
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Department of Biology, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Catherine Girard
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC G7H 2B1, Canada
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Alexander I Culley
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Pacific Biosciences Research Center, 1800 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
2
|
Langlois V, Girard C, Vincent WF, Culley AI. A Tale of Two Seasons: Distinct Seasonal Viral Communities in a Thermokarst Lake. Microorganisms 2023; 11:microorganisms11020428. [PMID: 36838393 PMCID: PMC9964402 DOI: 10.3390/microorganisms11020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Thermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO2 but the "top down" forces that influence microbial dynamics (i.e., grazers and viruses) and how they vary temporally within these lakes are still poorly understood. The aim of this study was to examine viral diversity over time to elucidate the seasonal structure of the viral communities in thermokarst lakes. We produced virus-enriched metagenomes from a subarctic peatland thermokarst lake in the summer and winter over three years. The vast majority of vOTUs assigned to viral families belonged to Caudovirales (Caudoviricetes), notably the morphological groups myovirus, siphovirus and podovirus. We identified two distinct communities: a dynamic, seasonal community in the oxygenated surface layer during the summer and a stable community found in the anoxic water layer at the bottom of the lake in summer and throughout much of the water column in winter. Comparison with other permafrost and northern lake metagenomes highlighted the distinct composition of viral communities in this permafrost thaw lake ecosystem.
Collapse
Affiliation(s)
- Valérie Langlois
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Girard
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Warwick F. Vincent
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
3
|
Coelho LF, Couceiro JF, Keller-Costa T, Valente SM, Ramalho TP, Carneiro J, Comte J, Blais MA, Vincent WF, Martins Z, Canário J, Costa R. Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154286. [PMID: 35247410 DOI: 10.1016/j.scitotenv.2022.154286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current knowledge of the processes that shape prokaryotic community assembly in sea ice across polar ecosystems is scarce. Here, we coupled culture-dependent (bacterial isolation on R2A medium) and culture-independent (high-throughput 16S rRNA gene sequencing) approaches to provide the first comprehensive assessment of prokaryotic communities in the late winter ice and its underlying water along a natural salinity gradient in coastal Hudson Bay, an iconic cryo-environment that marks the ecological transition between Canadian Subarctic and Arctic biomes. We found that prokaryotic community assembly processes in the ice were less selective at low salinity since typical freshwater taxa such as Frankiales, Burkholderiales, and Chitinophagales dominated both the ice and its underlying water. In contrast, there were sharp shifts in community structure between the ice and underlying water samples at sites with higher salinity, with the orders Alteromonadales and Flavobacteriales dominating the ice, while the abovementioned freshwater taxa dominated the underlying water communities. Moreover, primary producers including Cyanobium (Cyanobacteria, Synechococcales) may play a role in shaping the ice communities and were accompanied by known Planctomycetes and Verrucomicrobiae taxa. Culture-dependent analyses showed that the ice contained pigment-producing psychrotolerant or psychrophilic bacteria from the phyla Proteobacteria, Actinobacteriota, and Bacteroidota, likely favored by the combination of low temperatures and the seasonal increase in sunlight. Our findings suggest that salinity, photosynthesis and dissolved organic matter are the main drivers of prokaryotic community structure in the late winter ice of coastal Hudson Bay, the ecosystem with the fastest sea ice loss rate in the Canadian North.
Collapse
Affiliation(s)
- Lígia Fonseca Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sara Martinez Valente
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago Pereirinha Ramalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Joana Carneiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, G1K 9A9 Quebec City, QC, Canada; Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Amélie Blais
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada; Département de biologie & Takuvik Joint International Laboratory, Université Laval, Quebec City, Québec G1V 0A6, Canada
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada; Département de biologie & Takuvik Joint International Laboratory, Université Laval, Quebec City, Québec G1V 0A6, Canada
| | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Blais MA, Matveev A, Lovejoy C, Vincent WF. Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Front Microbiol 2022; 12:760282. [PMID: 35046910 PMCID: PMC8762315 DOI: 10.3389/fmicb.2021.760282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters. The microbial communities differed by size-fraction (separated with a 3-μm filter), and clustered into three distinct environmental groups: (1) the GWR sites throughout a 150-km sampling transect; (2) the GWR plume in Hudson Bay; and (3) small rivers that flow through degraded permafrost landscapes. There was a downstream increase in taxonomic richness along the GWR, suggesting that sub-catchment inputs influence microbial community structure in the absence of sharp environmental gradients. Microbial community structure shifted across the salinity gradient within the plume, with changes in taxonomic composition and diversity. Rivers flowing through degraded permafrost had distinct physicochemical and microbiome characteristics, with allochthonous dissolved organic carbon explaining part of the variation in community structure. Finally, our analyses of the core microbiome indicated that while a substantial part of all communities consisted of generalists, most taxa had a more limited environmental range and may therefore be sensitive to ongoing change.
Collapse
Affiliation(s)
- Marie-Amélie Blais
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Alex Matveev
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Québec-Océan, Université Laval, Quebec City, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Seguin JC, Fernandez X, Boudreau S, Voyer N. Chemical Composition of the Unexplored Volatile Fraction of Betula glandulosa, a Prevalent Shrub in Nunavik, Quebec. Chem Biodivers 2021; 19:e202100871. [PMID: 34882976 DOI: 10.1002/cbdv.202100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
The volatile fraction of the leaves of Betula glandulosa Michx. has been investigated for its secondary metabolite composition by GC-MS and GC/FID. The rapid expansion of this shrub species in subarctic landscapes, like the ones found in Nunavik (Northern Québec, Canada), highly impacts ecosystem dynamics. Yet, despite its abundance, few phytochemical investigations have yet been conducted on this species. In this study, we present the first phytochemical investigation of the volatile metabolites of B. glandulosa leaves. Although no essential oil was isolated, volatile compounds were extracted from the hydrosol by steam distillation. The main metabolites observed were linalool (14.6 - 19.0%), C 6 oxylipins (known as green leaf volatiles, GLV; total of 18.2 - 40.2%), eugenol (1.6 - 8.6%) and α -terpineol (3.3 - 4.8%). Dwarf birch is an important food source for insects and herbivores, so knowledge of its metabolite composition could help understand parts of its functional role in subarctic ecosystems. The composition of the volatile fraction could serve as marker for differentiating B. glandulosa from other dwarf birch species like Betula nana L.
Collapse
Affiliation(s)
- Jean-Christophe Seguin
- Laval University: Universite Laval, Chemistry department, 1045, av. de la Medecine, Office 1220, G1V0A6, Quebec, CANADA
| | - Xavier Fernandez
- Université Côte d'Azur: Universite de Nice Sophia Antipolis, Institut de chimie de Nice, Parc Valrose, 28 avenue Valrose, CEDEX 2, 06108, Nice, FRANCE
| | - Stéphane Boudreau
- Laval University: Universite Laval, Département de biologie, 1045, av. de la Medecine, Office 3047 A/B, G1V0A6, Quebec, CANADA
| | - Normand Voyer
- Universite Laval, Chimie, 1045 avenue de la médecine, G1V 0A6, Quebec, CANADA
| |
Collapse
|
6
|
Nozais C, Vincent WF, Belzile C, Gosselin M, Blais MA, Canário J, Archambault P. The Great Whale River ecosystem: ecology of a subarctic river and its receiving waters in coastal Hudson Bay, Canada. ECOSCIENCE 2021. [DOI: 10.1080/11956860.2021.1926137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Christian Nozais
- Québec-Océan & Département de Biologie, Chimie et Géographie, Université du Québec À Rimouski, Rimouski, Canada
| | - Warwick F. Vincent
- Centre d’études Nordiques (CEN) & Département de Biologie, Université Laval, Québec, Canada
| | - Claude Belzile
- Québec-Océan & Institut des Sciences de la Mer de Rimouski, Université du Québec À Rimouski, Rimouski, Canada
| | - Michel Gosselin
- Québec-Océan & Institut des Sciences de la Mer de Rimouski, Université du Québec À Rimouski, Rimouski, Canada
| | - Marie-Amélie Blais
- Centre d’études Nordiques (CEN) & Département de Biologie, Université Laval, Québec, Canada
| | - João Canário
- Centro de Química Estrututal, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Philippe Archambault
- ArcticNet, Québec-Océan & Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Langlais K, Bhiry N, Lavoie M. Holocene dynamics of an inland palsa peatland at Wiyâshâkimî Lake (Nunavik, Canada). ECOSCIENCE 2021. [DOI: 10.1080/11956860.2021.1907975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Karine Langlais
- Centre d’études nordiques (CEN) and Département de géographie, Université Laval, Québec, Québec, Canada
| | - Najat Bhiry
- Centre d’études nordiques (CEN) and Département de géographie, Université Laval, Québec, Québec, Canada
| | - Martin Lavoie
- Centre d’études nordiques (CEN) and Département de géographie, Université Laval, Québec, Québec, Canada
| |
Collapse
|
8
|
Masumoto S, Kitagawa R, Nishizawa K, Kaneko R, Osono T, Hasegawa M, Matsuoka S, Uchida M, Mori AS. Functionally explicit partitioning of plant β-diversity reveal soil fungal assembly in the subarctic tundra. FEMS Microbiol Ecol 2021; 97:6366230. [PMID: 34494103 DOI: 10.1093/femsec/fiab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
Metabarcoding technologies for soil fungal DNA pools have enabled to capture the diversity of fungal community and the agreement of their β-diversity with plant β-diversity. However, processes underlying the synchrony of the aboveground-belowground biodiversity is still unclear. By using partitioning methods for plant β-diversity, this study explored the process driving synchrony in tundra ecosystems, in which drastic vegetation shifts are observed with climate warming. Our methods based on Baselga's partitioning enabled the division of plant β-diversity into two phenomena and three functional components. Correlation of fungal β-diversity with the components of plant β-diversity showed that the spatial replacement of fungi was promoted by plant species turnover, in particular, plant species turnover with functional exchange. In addition, spatial variety of graminoid or forbs species, rather than shrubs, enhanced fungal β-diversity. These results suggest the importance of small-scale factors such as plant-fungal interactions or local environments modified by plants for the fungal community assemblage. The process-based understanding of community dynamics of plants and fungi allows us to predict the ongoing shrub encroachment in the Arctic region, which could weaken the aboveground-belowground synchrony.
Collapse
Affiliation(s)
- Shota Masumoto
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| | - Ryo Kitagawa
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Keita Nishizawa
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| | - Ryo Kaneko
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Takashi Osono
- Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| | - Motohiro Hasegawa
- Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| | - Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Hyogo, 650-0047, Japan
| | - Masaki Uchida
- National Institute of Polar Research, Tokyo 190-8518, Japan.,School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Tokyo 190-8518, Japan
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| |
Collapse
|
9
|
Kluge M, Wurzbacher C, Wauthy M, Clemmensen KE, Hawkes JA, Einarsdottir K, Stenlid J, Peura S. Community composition of aquatic fungi across the thawing Arctic. Sci Data 2021; 8:221. [PMID: 34413318 PMCID: PMC8377128 DOI: 10.1038/s41597-021-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.
Collapse
Affiliation(s)
- Mariana Kluge
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Christian Wurzbacher
- Department of Civil, Geo and Environmental Engineering, Technische Universität München, Munich, Germany
| | - Maxime Wauthy
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre for Northern Studies (CEN), Université Laval, Québec, Québec, Canada
| | - Karina Engelbrecht Clemmensen
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Karolina Einarsdottir
- Limnology, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Owczarek P, Opała-Owczarek M, Boudreau S, Lajeunesse P, Stachnik Ł. Re-activation of landslide in sub-Arctic areas due to extreme rainfall and discharge events (the mouth of the Great Whale River, Nunavik, Canada). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140991. [PMID: 32755789 DOI: 10.1016/j.scitotenv.2020.140991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Climate change is impacting surficial geomorphic processes, especially in sensitive areas such as the sub-Arctic. One of the most common examples involves landslides, which often develop in glacio-isostatically raised marine clays in northeastern Canada. One of these sites, an expansive area of complex landslide terrain located at the mouth of the Great Whale River in Nunavik, has already been studied due to its age and morphology. We present new data, based on the multidisciplinary research including geomorphic, dendrochronological, and hydroclimatological analyses, allowing us to determine how contemporary climate change has affected landslide reactivation during the last 80 years. Our research included collecting 60 cores from Picea glauca trees, growing on the marginal zone of a landslide deposit, as well as from a reference site. The tilted trees formed eccentric growth-ring patterns, which provided us with reliable dates on the landslide events. In addition to these dendrochronological data, we studied these landslides using repeated aerial photography, which showed changes in river channel constrictions in the period 1969-2019. Based on the eccentricity index of the tree ring data, we recognized disturbance events due to landslides. We compared these data with the hydroclimatological conditions and found clearly visible correlations between heavy rainfall and discharge (>95th percentile) of the Great Whale River. The increased landslide activity over the past several years can be linked to an increase in extreme summertime rainfall events. Increased landslide activity poses a real threat, through its input of large amounts of fine-grained sediment to the river, causing it to narrow.
Collapse
Affiliation(s)
- Piotr Owczarek
- Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-138 Wrocław, Poland.
| | - Magdalena Opała-Owczarek
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Bedzinska 60, 41-200 Sosnowiec, Poland
| | - Stéphane Boudreau
- Département de biologie, Université Laval, Pavillon Alexandre-Vachon,, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Patrick Lajeunesse
- Département de géographie, Université Laval, Pavillon Abitibi-Price 2405, Québec, Québec G1V 0A6, Canada
| | - Łukasz Stachnik
- Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-138 Wrocław, Poland
| |
Collapse
|
11
|
Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes. WATER 2020. [DOI: 10.3390/w12113059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems.
Collapse
|
12
|
Saulnier-Talbot É, Antoniades D, Pienitz R. Hotspots of biotic compositional change in lakes along vast latitudinal transects in northern Canada. GLOBAL CHANGE BIOLOGY 2020; 26:2270-2279. [PMID: 31995661 DOI: 10.1111/gcb.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec-Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta-diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed- and open-crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation- and soil-related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid- to high-latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi-factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high-altitude and high-latitude freshwater communities due to global change.
Collapse
Affiliation(s)
- Émilie Saulnier-Talbot
- Laboratoire de paléoécologie aquatique (LPA), Département de géographie and Centre d'études nordiques (CEN: Centre for Northern Studies), Université Laval, Québec, QC, Canada
| | - Dermot Antoniades
- Laboratoire de paléoécologie aquatique (LPA), Département de géographie and Centre d'études nordiques (CEN: Centre for Northern Studies), Université Laval, Québec, QC, Canada
| | - Reinhard Pienitz
- Laboratoire de paléoécologie aquatique (LPA), Département de géographie and Centre d'études nordiques (CEN: Centre for Northern Studies), Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2. REMOTE SENSING 2019. [DOI: 10.3390/rs11060657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thermokarst waterbodies caused by permafrost thawing and degradation are ubiquitous in many subarctic and Arctic regions. They are globally important components of the biogeochemical carbon cycle and have potential feedback effects on climate. These northern waters are mostly small lakes and ponds, and although they may be mapped using very high-resolution satellites or aerial photography, these approaches are generally not suitable for monitoring purposes, due to the cost and limited availability of such images. In this study we evaluated the potential use of widely available high-resolution imagery from Sentinel-2 (S2) for the characterization of the spectral reflectance of thermokarst lakes and ponds. Specifically, we aimed to define the minimum lake area that could be reliably imaged, and to identify challenges and solutions for remote sensing of such waters in the future. The study was conducted in subarctic Canada, in the vicinity of Whapmagoostui-Kuujjuarapik (Nunavik, Québec), an area in the sporadic permafrost zone with numerous thermokarst waterbodies that vary greatly in size. Ground truthing lake reflectance data were collected using an Unmanned Aerial System (UAS) fitted with a multispectral camera that collected images at 13 cm resolution. The results were compared with reflectance from Sentinel-2 images, and the effect of lake area on the reflectance response was assessed. Our results show that Sentinel-2 imagery was suitable for waterbodies larger than 350 m2 once their boundaries were defined, which in the two test sites would allow monitoring from 11% to 30% of the waterbodies and 73% to 85% of the total lake area. Challenges for remote sensing of small lakes include the confounding effects of water reflection (both direct radiation and diffuse), wind and shadow. Given the small threshold area and frequent revisit time, Sentinel-2 provides a valuable approach towards the continuous monitoring of waterbodies, including ponds and small lakes such as those found in thermokarst landscapes. UASs provide a complementary approach for ground truthing and boundary definition.
Collapse
|
14
|
Decaulne A, Bhiry N, Lebrun J, Veilleux S, Sarrazin D. Geomorphic evidence of Holocene slope dynamics on the Canadian shield – a study from Lac à l’Eau-Claire, western Nunavik. ECOSCIENCE 2018. [DOI: 10.1080/11956860.2018.1431376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Armelle Decaulne
- CNRS Laboratoire LETG, Campus du Tertre, Nantes, France
- Labex DRIIHM, OHMi NUNAVIK-TUKISIG, France
- GDR 2012 AREES (Arctique - Enjeux pour l’Environnement et les Sociétés), France
| | - Najat Bhiry
- Labex DRIIHM, OHMi NUNAVIK-TUKISIG, France
- Centre d’études nordiques, Québec, Canada
- Département de géographie, Université Laval, Québec, Canada
| | - Julien Lebrun
- Département de géographie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
15
|
Crevecoeur S, Vincent WF, Comte J, Matveev A, Lovejoy C. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. PLoS One 2017; 12:e0188223. [PMID: 29182670 PMCID: PMC5705078 DOI: 10.1371/journal.pone.0188223] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022] Open
Abstract
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Warwick F. Vincent
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
| | - Jérôme Comte
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Alex Matveev
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
| | - Connie Lovejoy
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Québec-Océan, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
MacMillan GA, Chételat J, Heath JP, Mickpegak R, Amyot M. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1336-1345. [PMID: 28879355 DOI: 10.1039/c7em00082k] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂15N, ∂13C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g-1), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.
Collapse
Affiliation(s)
- Gwyneth Anne MacMillan
- Centre for Northern Studies, Department of Biological Sciences, University of Montreal, Montreal, QC, CanadaH2V 2S9.
| | | | | | | | | |
Collapse
|
17
|
Ropars P, Angers-Blondin S, Gagnon M, Myers-Smith IH, Lévesque E, Boudreau S. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs. GLOBAL CHANGE BIOLOGY 2017; 23:3281-3291. [PMID: 28107770 DOI: 10.1111/gcb.13631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/06/2023]
Abstract
Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key consideration for the success of future dendroclimatological studies on shrubs.
Collapse
Affiliation(s)
- Pascale Ropars
- Chaire de recherche du Canada en biodiversité nordique and Département de biologie, chimie et géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
| | - Sandra Angers-Blondin
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Marianne Gagnon
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département de biologie, Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
| | | | - Esther Lévesque
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Stéphane Boudreau
- Centre d'études nordiques, 2405 av. de la Terrasse, Québec, QC, G1V 0A6, Canada
- Département de biologie, Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
18
|
Crevecoeur S, Vincent WF, Lovejoy C. Environmental selection of planktonic methanogens in permafrost thaw ponds. Sci Rep 2016; 6:31312. [PMID: 27501855 PMCID: PMC4977513 DOI: 10.1038/srep31312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | - Warwick F Vincent
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Connie Lovejoy
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.,Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Rautio M, Dufresne F, Laurion I, Bonilla S, Vincent WF, Christoffersen KS. Shallow freshwater ecosystems of the circumpolar Arctic. ECOSCIENCE 2015. [DOI: 10.2980/18-3-3463] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milla Rautio
- Centre d'études nordiques and Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada,
| | - France Dufresne
- Centre d'études nordiques and Département de biologie, chimie, géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Isabelle Laurion
- Centre d'études nordiques and INRS—Centre Eau Terre Environnement, Québec, Québec, Canada
| | - Sylvia Bonilla
- Grupo de Ecología y Fisiología de Fitoplancton, Sección Limnología, Facultad de Ciencias, 11400-Montevideo, Uruguay
| | - Warwick F. Vincent
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec, Canada
| | | |
Collapse
|
20
|
MacMillan GA, Girard C, Chételat J, Laurion I, Amyot M. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7743-53. [PMID: 26030209 DOI: 10.1021/acs.est.5b00763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.
Collapse
Affiliation(s)
- Gwyneth A MacMillan
- †Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec Canada, H2V 2S9
| | - Catherine Girard
- †Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec Canada, H2V 2S9
| | - John Chételat
- ‡Environment Canada, National Wildlife Research Centre, Ottawa, Ontario Canada, K1A 0H3
| | - Isabelle Laurion
- §Centre d'études nordiques, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement, Québec, Quebec Canada, G1K 9A9
| | - Marc Amyot
- †Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec Canada, H2V 2S9
| |
Collapse
|
21
|
Crevecoeur S, Vincent WF, Comte J, Lovejoy C. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 2015; 6:192. [PMID: 25926816 PMCID: PMC4396522 DOI: 10.3389/fmicb.2015.00192] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022] Open
Abstract
Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada
| | - Jérôme Comte
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada ; Québec Océan, Université Laval Québec, QC, Canada
| |
Collapse
|