1
|
Markolf M, Zinowsky M, Keller JK, Borys J, Cillov A, Schülke O. Toward Passive Acoustic Monitoring of Lemurs: Using an Affordable Open-Source System to Monitor Phaner Vocal Activity and Density. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractDeveloping new cost-effective methods for monitoring the distribution and abundance of species is essential for conservation biology. Passive acoustic monitoring (PAM) has long been used in marine mammals and has recently been postulated to be a promising method to improve monitoring of terrestrial wildlife as well. Because Madagascar’s lemurs are among the globally most threatened taxa, this study was designed to assess the applicability of an affordable and open-source PAM device to estimate the density of pale fork-marked lemurs (Phaner pallescens). Using 12 playback experiments and one fixed transect of four automated acoustic recorders during one night of the dry season in Kirindy Forest, we experimentally estimated the detection space for Phaner and other lemur vocalizations. Furthermore, we manually annotated more than 10,000 vocalizations of Phaner from a single location and used bout rates from previous studies to estimate density within the detection space. To truncate detections beyond 150 m, we applied a sound pressure level (SPL) threshold filtering out vocalizations below SPL 50 (dB re 20 μPa). During the dry season, vocalizations of Phaner can be detected with confidence beyond 150 m by a human listener. Within our fixed truncated detection area corresponding to an area of 0.07 km2 (detection radius of 150 m), we estimated 10.5 bouts per hour corresponding to a density of Phaner of 38.6 individuals/km2. Our density estimates are in line with previous estimates based on individually marked animals conducted in the same area. Our findings suggest that PAM also could be combined with distance sampling methods to estimate densities. We conclude that PAM is a promising method to improve the monitoring and conservation of Phaner and many other vocally active primates.
Collapse
|
2
|
Wild TA, Wikelski M, Tyndel S, Alarcón‐Nieto G, Klump BC, Aplin LM, Meboldt M, Williams HJ. Internet on animals: Wi‐Fi‐enabled devices provide a solution for big data transmission in biologging. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Timm A. Wild
- Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Product Development Group Zurich (pd z) ETH Zürich Zürich Switzerland
| | - Martin Wikelski
- Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Stephen Tyndel
- Cognitive and Cultural Ecology Research Group Max Planck Institute of Animal Behavior Radolfzell Germany
| | - Gustavo Alarcón‐Nieto
- Cognitive and Cultural Ecology Research Group Max Planck Institute of Animal Behavior Radolfzell Germany
| | - Barbara C. Klump
- Cognitive and Cultural Ecology Research Group Max Planck Institute of Animal Behavior Radolfzell Germany
| | - Lucy M. Aplin
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Cognitive and Cultural Ecology Research Group Max Planck Institute of Animal Behavior Radolfzell Germany
| | - Mirko Meboldt
- Product Development Group Zurich (pd z) ETH Zürich Zürich Switzerland
| | - Hannah J. Williams
- Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
| |
Collapse
|
3
|
Abe T, Kubo N, Abe K, Suzuki H, Mizutani Y, Yoda K, Tadakuma R, Tsumaki Y. Development of Data Logger Separator for Bio-Logging of Wild Seabirds. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bio-logging technique is extensively used in the fields of ecology and ethology, wherein a data logger, such as a sensor or camera, is attached to the target animal’s body to collect the required data. In this method, the efficiency of recovery of the data logger is not ideal. In this study, we proposed a new recovery method, with the aim of addressing the aforementioned problem in bio-logging. The authors previously fabricated a data-logger separator, which weighed approximately 10 g, and was targeted at small seabirds. Because there were some problems associated with the circuit board and the separation performance of this device, we modified the device to overcome the previous drawbacks. We fabricated a flexible printed circuit to improve the operation of the mounted actuator and wireless microcomputer, and improve the efficiency of the fabrication process. We conducted an experiment to determine the proper length and position at which the actuator is attached, in order to achieve a stable motion. We thus fabricated a new prototype with these improvements and performed an operational test at low temperatures from a particular distance, simulating actual usage in a natural environment. The results demonstrated that separation occurred without failure, thus indicating that the separator can be efficiently used in practical environment.
Collapse
|