1
|
Liao X, Li B, Wang L, Chen Y. Boric acid functionalized Fe 3O 4@CeO 2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens Bioelectron 2024; 264:116637. [PMID: 39146768 DOI: 10.1016/j.bios.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Caffeic acid (CA) is a natural polyphenol that can have various positive effects on human health. However, its extraction and processing can cause significant ecological issues. Therefore, it is crucial to detect and degrade CA effectively in the environment. In this study, we have developed a multifunctional magnetic luminescent nanozyme, Fe3O4@CeO2/Tb-MOF, which combines peroxidase activity to detect and degrade CA. The fluorescence of the nanozyme was significantly attenuated due to the specific nucleophilic reaction between its boronic acid moiety and the o-diphenol hydroxyl group of CA, energy competition absorption and photo-induced electron transfer (PET) effect. This nanozyme demonstrates a linear detection range from 50 nM to 500 μM and an exceptionally low detection limit of 18.9 nM, along with remarkable selectivity and stability. Moreover, the synergistic catalysis of Fe3O4 and CeO2 within Fe3O4@CeO2/Tb-MOF fosters peroxidase activity, leading to the generation of substantial free radicals catalyzed by H2O2, which ensures the efficient degradation of CA (∼95%). The superparamagnetic property of Fe3O4 further enables the efficient reuse and recycling of the nanozyme. This research provides a novel approach for the concurrent detection and remediation of environmental contaminants.
Collapse
Affiliation(s)
- Xiaochen Liao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Bai Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Yang Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
2
|
Yang Y, Zhang X, Wang X, Jing X, Yu L, Bai B, Bo T, Zhang J, Qian H, Gu Y. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/HOF heterojunction for the detection of bisphenol A. Food Chem 2024; 443:138499. [PMID: 38277929 DOI: 10.1016/j.foodchem.2024.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
As an emerging porous material, hydrogen-bonded organic framework materials (HOFs) still pose application challenges. In this work, the designed type "I + II" heterojunction extracted hot electrons from HOFs using quantum dots (QDs) and polypyrrole (Ppy), improving the stability and photoelectrochemical performance of materials. In addition to serving as a potential well, electropolymerized Ppy was used as a recognition element for bisphenol A (BPA), and a novel self-powered molecularly imprinted photoelectrochemical (MIP-PEC) sensor was designed. The sensing platform showed a linear relationship from 1 × 10-10 to 1 × 10-7 mol∙L-1 and from 1 × 10-7 to 1 mol∙L-1 with an acceptable detection limit of 4.2 × 10-11 mol∙L-1. This is the first application of HOFs in constructing MIP-PEC sensors and a new attempt to improve the stability of HOFs for the application of porous crystal materials in the sensing field.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China.
| | - Xiaoyi Zhang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Ligang Yu
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Hailong Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Yang L, Wang X, Zhang F, Yu L, Bai B, Zhang J, Zhang B, Tian Y, Qin S, Yang Y. Two birds with one stone: A universal design and application of signal-on labeled fluorescent/electrochemical dual-signal mode biosensor for the detection of tetracycline residues in tap water, milk and chicken. Food Chem 2024; 430:136904. [PMID: 37523822 DOI: 10.1016/j.foodchem.2023.136904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
An ingenious and universal design of fluorescent/electrochemical dual-signal mode sensing platform was constructed for the sensitive, selective and accurate detection of tetracycline (TET). Apt-functionalized nano-magnetic beads (Fe3O4-Apt) as capture probe, Apt-complementary short-chain functionalized fluorescent MOF loaded with methylene blue (MB) (cDNA-MOF-MB) as dual-signal tag were prepared. The sensing platform (Fe3O4-Apt/cDNA-MOF-MB) was formed based on the base complementary pairing of Apt and cDNA. With the help of Apt for target recognition, together with magnetic separation technology, a dual-signal mode biosensor was constructed. The dual-signal mode biosensor exhibited a wide linear concentration range from 1.00 × 10-9 g/mL to 1.00 × 10-4 g/mL with a low limit of detection (LOD) of 1.69 × 10-10 g/mL (fluorescence mode assay) and 1.15 × 10-10 g/mL (electrochemical mode assay). The proposed biosensor had been successfully applied to the determination of TET content in real samples with satisfactory recoveries (94.99-101.30%).
Collapse
Affiliation(s)
- Lanqing Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ligang Yu
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Bo Zhang
- School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Yu Tian
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030012, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yukun Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Liu Y, Li W, Wu K, Lei B, Chen J, Zhang X, Lei H, Duan X, Huang R. Antifungal molecular details of MNQ-derived novel carbon dots against Penicillium digitatum. Food Chem 2023; 413:135687. [PMID: 36804745 DOI: 10.1016/j.foodchem.2023.135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
It is urgent to develop high-efficiency and low-toxicity natural antifungal agents on green mold caused by Penicillium digitatum. The effect of 2-methoxy-1, 4-naphthoquinone (MNQ) inhibition of P. digitatum was not very satisfactory. MNQ-derived carbon dots (MNQ-CDs) synthesized through a solvothermal route were used as antifungal agents against P. digitatum. The antifungal activity of prepared MNQ-CDswas enhanced compared to MNQ, and the minimum inhibitory concentration was 2.8 μg/mL. A total of 441 genes and 122 metabolites have undergone significant changes. The omics data revealed that MNQ-CDs primarily modified the metabolism of aromatic amino acids and synthesis of the cell membrane in P. digitatum, thereby inhibiting its propagation. Furthermore, compared with MNQ, MNQ-CDs had a better control effect on the green mold of citrus fruits, and could more significantly inhibit the propagation of P. digitatum. This study provides a new idea for the design of new and efficient antifungal materials.
Collapse
Affiliation(s)
- Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Li X, Wang C, Li P, Sun X, Shao Z, Xia J, Liu Q, Shen F, Fang Y. Beer-derived nitrogen, phosphorus co-doped carbon quantum dots: Highly selective on-off-on fluorescent probes for the detection of ascorbic acid in fruits. Food Chem 2023; 409:135243. [PMID: 36584525 DOI: 10.1016/j.foodchem.2022.135243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A rapid, facile and ultrasensitive fluorescence sensing system based on beer-derived nitrogen, phosphorus co-doped carbon quantum dots (N, P-CQDs) for the detection of ascorbic acid (AA) in fruits was proposed. N, P-CQDs were successfully synthesized by one-step hydrothermal method, which afforded a high quantum yield (21.7 %), and showed the fluorescence with a maximum emission wavelength of 450 nm at an excitation wavelength of 370 nm. Further, N, P-CQDs were employed as an efficient sensor for ultrasensitive Fe3+-detection at concentrations ranging from 1-20 µM and 100-300 µM, respectively. N, P-CQDs@Fe3+ showed a high sensitivity and selectivity for AA detection. A linear response range for AA was obtained from 1 to 200 µM with limit of detection of 0.84 µM was obtained for AA. The result of MTT test showed that N, P-CQDs exhibit low toxicity, providing fast, accurate and less toxic route for testing AA in the food analysis fields.
Collapse
Affiliation(s)
- Xinyue Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Chao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ji Xia
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
6
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
|