1
|
Yang Y, Zhao C, Wang Z, Liu F, Zhao M, Yang H, Chen J, Chen X, Shi M, Jiang D, Luo X, Duan Y, Bai Y. Therapeutic strategies and predictive models for Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma in adults based on data of two Chinese medical centers. Aging (Albany NY) 2024; 16:1696-1711. [PMID: 38261736 PMCID: PMC10866448 DOI: 10.18632/aging.205452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE This study aims to establish an effective predictive model for predicting Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma (TFE3-RCC) and develop optimal therapeutic strategies. METHODS Data from 4961 patients diagnosed with renal cell carcinoma at two medical centers in China were retrospectively analyzed. A cohort of 1571 patients from Zhejiang Provincial People's Hospital (Ra cohort) was selected to construct the model. Another cohort of 1124 patients from the Second Affiliated Hospital of Zhejiang Chinese Medical University was used for external validation (the Ha cohort). All patients with TFE3-RCC in both cohorts were included in the Ta cohort for the prognostic analysis. Univariate and multivariate binary logistic regression analyses were performed to identify independent predictors of the predictive nomogram. The apparent performance of the model was validated. Decision curve analysis was also performed to assess the clinical utility of the developed model. Factors associated with progression and prognosis in the Ta cohort were analyzed using the log-rank method, and Cox regression analysis and Kaplan-Meier survival curves were used to describe the effects of factors on prognosis and progression. RESULTS Univariate and multivariate logistic regression analyses demonstrated that age, sex, BMI, smoking, eosinophils, and LDL were independent predictors of TFE3-RCC. Therefore, a predictive nomogram for TFE3-RCC, which had good discriminatory power (AUC = 0.796), was constructed. External validation (AUC = 0.806) also revealed good predictive ability. The calibration curves displayed good consistency between the predicted and observed incidences of TFE3-RCC. Invasion of regional lymph nodes, tyrosine kinase inhibitors, and surgical methods were independent factors associated with progression. Tyrosine kinase inhibitors are independent prognostic factors. CONCLUSION This study not only proposed a high-precision clinical prediction model composed of various variables for the early diagnosis of Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma but also optimized therapeutic strategies through prognostic analysis.
Collapse
Affiliation(s)
- Yunkai Yang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Changfeng Zhao
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhida Wang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Feng Liu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Ming Zhao
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang 310011, China
| | - Huiwen Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Jun Chen
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Xuejing Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Min Shi
- Department of Medical Psychology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Dixing Jiang
- Department of Urology, Zhejiang Medical and Health Group Hangzhou Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310022, China
| | - Xiaoting Luo
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Yue Duan
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Yuchen Bai
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| |
Collapse
|
2
|
Schaf J, Shinhmar S, Zeng Q, Pardo OE, Beesley P, Syed N, Williams RSB. Enhanced Sestrin expression through Tanshinone 2A treatment improves PI3K-dependent inhibition of glioma growth. Cell Death Discov 2023; 9:172. [PMID: 37202382 DOI: 10.1038/s41420-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
Collapse
Affiliation(s)
- Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|