1
|
Su Z, Li H, Xu Y, Zhang C, Wu J, Lei Y. Establishment of an efficient Agrobacterium tumefaciens-mediated transformation system for an Armillaria species, a host of the fully mycoheterotrophic plant Gastrodia elata. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01230-8. [PMID: 39644422 DOI: 10.1007/s12223-024-01230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The genus Armillaria (Basidiomycota, Agaricales, Physalacriaceae) comprises pathogenic fungi that cause root-rot disease in plants, as well as species with low pathogenicity, some of which are hosts of the fully mycoheterotrophic orchid plant Gastrodia elata (Orchidaceae). To investigate the mechanisms underlying such special interactions between Armillaria fungi and G. elata, it is crucial to establish genetic transformation platforms for the Armillaria fungi and G. elata. In this study, an Armillaria strain Arm37 was isolated from G. elata, which can form symbiosis with G. elata in axenic culture under laboratory conditions. A vector pYT-EV containing a cassette for hygromycin-resistance selection and a cassette for expressing or silencing target genes was constructed. An Agrobacterium tumefaciens-mediated transformation (ATMT) system for Arm37 was successfully developed and optimized to achieve a transformation efficiency of 32%. The ATMT system was successfully used to express the reporter genes eGFP encoding enhanced green fluorescent protein and GUS encoding β-glucuronidase and to effectively silence the endogenous gene URA3 encoding orotidine-5'-phosphate decarboxylase in Arm37. This ATMT system established for Arm37 provides an efficient genetic tool for exploring the Arm37 genes that are involved in the unique interaction between the Armillaria fungi and fully mycoheterotrophic plant G. elata.
Collapse
Affiliation(s)
- Zhongxiang Su
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hongjing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming, China.
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Ling YY, Ling ZL, Zhao RL. Construction of a heat-resistant strain of Lentinus edodes by fungal Hsp20 protein overexpression and genetic transformation. Front Microbiol 2022; 13:1009885. [PMID: 36478857 PMCID: PMC9721462 DOI: 10.3389/fmicb.2022.1009885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
The shiitake mushroom (Lentinus edodes) is the second most popular edible mushroom globally due to its rich nutritional value and health benefits associated with consumption. However, the characteristics of growing at low temperatures limit the area and time of its cultivating. We selected a low-temperature cultivar as the original strain. We proposed to construct a heat-shock protein expression vector to achieve genetic transformation in this low-temperature strain to improve the survivability of the strain against the heat-shock response. In this study, an overexpression vector pEHg-gdp-hsp20 for the heat shock protein 20 gene of A. bisporus was constructed using a homologous recombination method. This vector was transferred into dikaryotic and monokaryotic mycelia by the Agrobacterium tumefaciens-method. The integration of hygb and hsp20 into the genome of L. edodes mycelia was verified by growth experiments on resistant plates and PCR analysis. The expression of the reporter gene mgfp5 was verified by fluorescence microscopy analysis and statistically resulted in 18.52 and 26.39% positivity for dikaryon, and monokaryon, respectively. Real-time PCR analysis showed that the expression of the hsp20 gene was more than 10-fold up-regulated in the three transformants; the mycelia of the three overexpression transformants could resume growth after 24 h heat treatment at 40°C, but the mycelia of the starting strain L087 could not recover growth at 25°C indicating that strains that successfully expressed hsp20 had greater overall recovery after heat shock. According to the study, A. bisporus hsp20 gene overexpression effectively improves the defensive capability of low-temperature mushroom strains against heat shock, laying the foundation for breeding heat-resistant high-quality transgenic shiitake mushrooms.
Collapse
Affiliation(s)
- Yun-Yan Ling
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Lin Ling
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
A highly efficient stratagem for protoplast isolation and genetic transformation in filamentous fungus Colletotrichum falcatum. Folia Microbiol (Praha) 2022; 67:479-490. [PMID: 35106705 DOI: 10.1007/s12223-022-00950-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Abstract
Red rot of sugarcane caused by the hemi-biotrophic fungal pathogen, Colletotrichum falcatum, is a major threat to sugarcane cultivation in many tropical countries such as India, Bangladesh, and Pakistan. With the accumulating information on pathogenicity determinants, namely, effectors and pathogen-associated molecular patterns (PAMPs) of C. falcatum, it is of paramount importance to decipher the functional role of these molecular players that may ultimately decide upon the outcome of sugarcane-C. falcatum interaction. Since C. falcatum is a multinucleated filamentous fungus, the conventional Agrobacterium-mediated transformation method could not be effectively utilized for targeted manipulation of genomic DNA. Hence, we developed a highly efficient protoplast-based transformation method for the virulent pathotype of C. falcatum - Cf671, which involves isolation of protoplast, polyethylene glycol (PEG)-mediated transformation, and regeneration of transformed protoplasts into hyphal colonies. In this study, germinating conidiospores of Cf671 were treated with different enzyme-osmoticum combinations, out of which 20 mg/mL lysing enzyme with 5 mg/mL β-glucanase in an osmoticum of 1.2 mol/L MgSO4 yielded maximum number of viable protoplasts. The resultant protoplasts were transformed with pAsp shuttle vector. Transformed protoplasts were regenerated into hyphal colonies under hygromycin selection and observed for GFP fluorescence. This protocol resulted in a transformation efficiency of > 130 transformants per μg of plasmid DNA. This method of transformation is rapid, simple, and more efficient for gene knockout, site-directed mutagenesis, ectopic expression, and other genetic functional characterization experiments in C. falcatum, even with large vectors (> 10 kb) and can also be applied for other filamentous fungi.
Collapse
|
4
|
Baldin C, Kühbacher A, Merschak P, Sastré-Velásquez LE, Abt B, Dietl AM, Haas H, Gsaller F. Inducible Selectable Marker Genes to Improve Aspergillus fumigatus Genetic Manipulation. J Fungi (Basel) 2021; 7:506. [PMID: 34202756 PMCID: PMC8305790 DOI: 10.3390/jof7070506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/01/2023] Open
Abstract
The hygromycin B phosphotransferase gene from Escherichia coli and the pyrithiamine resistance gene from Aspergillus oryzae are two dominant selectable marker genes widely used to genetically manipulate several fungal species. Despite the recent development of CRISPR/Cas9 and marker-free systems, in vitro molecular tools to study Aspergillus fumigatus, which is a saprophytic fungus causing life-threatening diseases in immunocompromised hosts, still rely extensively on the use of dominant selectable markers. The limited number of drug selectable markers is already a critical aspect, but the possibility that their introduction into a microorganism could induce enhanced virulence or undesired effects on metabolic behavior constitutes another problem. In this context, here, we demonstrate that the use of ptrA in A. fumigatus leads to the secretion of a compound that allows the recovery of thiamine auxotrophy. In this study, we developed a simple modification of the two commonly used dominant markers in which the development of resistance can be controlled by the xylose-inducible promoter PxylP from Penicillium chrysogenum. This strategy provides an easy solution to avoid undesired side effects, since the marker expression can be readily silenced when not required.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.B.); (A.K.); (P.M.); (L.E.S.-V.); (B.A.); (A.-M.D.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.B.); (A.K.); (P.M.); (L.E.S.-V.); (B.A.); (A.-M.D.)
| |
Collapse
|
5
|
Santhanam P, Labbé C, Fietto LG, Bélanger RR. A reassessment of flocculosin-mediated biocontrol activity of Pseudozyma flocculosa through CRISPR/Cas9 gene editing. Fungal Genet Biol 2021; 153:103573. [PMID: 34029708 DOI: 10.1016/j.fgb.2021.103573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Pseudozyma flocculosa is an epiphytic yeast with powerful antagonistic activity against powdery mildews. This activity has been associated with the production of a rare antifungal glycolipid, flocculosin. In spite of the discovery of a specific gene cluster for flocculosin synthesis, attempts to ascribe a functional role to the molecule have been hampered by the inability to efficiently transform P. flocculosa. In this study, two different approaches, target gene replacement by homologous recombination (HR) and CRISPR-Cas9 based genome-editing, were utilized to decipher the role of flocculosin in the biocontrol activity of P.flocculosa. It was possible to alter the production of flocculosin through edition of fat1 by HR, but such mutants displayed abnormal phenotypes and the inability to produce sporidia. Sequencing analyses revealed that transformation by HR led to multiple insertions in the genome explaining the pleiotrophic effects of the approach. On the other hand, CRISPR-Cas9 transformation yielded one mutant that was altered specifically in the proper synthesis of flocculosin. Notwithstanding the loss of flocculosin production, such mutant was phenotypically similar to the wild-type, and when tested for its biocontrol activity against powdery mildew, displayed the same efficacy. These results offer strong evidence that flocculosin-mediated antibiosis is not responsible for the mode of action of P. flocculosa and highlight the potential of CRISPR-Cas9 for functional studies of otherwise difficult-to-transform fungi such as P. flocculosa.
Collapse
Affiliation(s)
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Luciano Gomes Fietto
- Département de Phytologie, Université Laval, Québec, QC, Canada; Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | |
Collapse
|
6
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wickramasinghe PK, Munafo JP. Fermentation Dynamics and Benzylic Derivative Production in Ischnoderma resinosum Isolates. ACS OMEGA 2020; 5:22268-22277. [PMID: 32923784 PMCID: PMC7482237 DOI: 10.1021/acsomega.0c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fermentation dynamics and benzylic derivative production were evaluated in the fermentation broth of six different Ischnoderma resinosum (P. Karst) isolates over a period of 30 days to understand their potential applications in bioreactor optimization for natural flavor compound production. d-Glucose and d-fructose levels decreased from 20.4 ± 0.4 to 7.1 ± 1.4 g/L and 1.0 ± 0.1 to <0.1 g/L, respectively, in all fermentations. Isolate I2 produced the highest concentration of ethanol (546. 4 ± 0.4 mg/L). l-Lactic acid production varied between 4.3 ± 0.6 and 3.7 ± 0.2 mg/L, whereas acetic acid concentrations decreased from 81.0 ± 3.3 to <40.0 mg/L. pH decreased from 4.9 ± 0.0 to 3.6 ± 0.4 at the end of 30 days in all fermentations. Isolate I3 was the highest producer of benzaldehyde (BA) (12.0 ± 0.2 mg/kg) and 4-methoxybenzaldehyde (4-MBA) (239.6 ± 3.9 mg/kg), while isolate I4 was the highest producer of 3,4-dimethoxybenzaldehyde (3,4-DMBA) (27.8 ± 0.2 mg/18 kg). Identification of isolate I3 as a high BA and 4-MBA producer and isolate I4 as a high 3,4-DMBA producer suggested differential benzylic derivative production among I. resinosum isolates. This study lays the foundation for future investigations evaluating additional I. resinosum isolates for benzylic derivative production as well as studies aimed at bioreactor optimization with potential commercial application.
Collapse
|
8
|
Díaz A, Villanueva P, Oliva V, Gil-Durán C, Fierro F, Chávez R, Vaca I. Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin. Front Microbiol 2019; 10:2675. [PMID: 31824460 PMCID: PMC6883257 DOI: 10.3389/fmicb.2019.02675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022] Open
Abstract
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Collapse
Affiliation(s)
- Anaí Díaz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Villanueva
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oliva
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Sekan AS, Myronycheva OS, Karlsson O, Gryganskyi AP, Blume Y. Green potential of Pleurotus spp. in biotechnology. PeerJ 2019; 7:e6664. [PMID: 30967974 PMCID: PMC6446892 DOI: 10.7717/peerj.6664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The genus Pleurotus is most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number of Pleurotus species are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests. The unique properties of Pleurotus species widely used in many environmental technologies, such as organic solid waste recycling, chemical pollutant degradation, and bioethanol production. METHODOLOGY The literature study encompasses peer-reviewed journals identified by systematic searches of electronic databases such as Google Scholar, NCBI, Springer, ResearchGate, ScienceDirect, and ISI Web of Knowledge. The search scheme was divided into several steps, as described below. RESULTS In this review, we describe studies examining the biotechnological feasibility of Pleurotus spp. to elucidate the importance of this genus for use in green technology. Here, we review areas of application of the genus Pleurotus as a prospective biotechnological tool. CONCLUSION The incomplete description of some fungal biochemical pathways emphasises the future research goals for this fungal culture.
Collapse
Affiliation(s)
- Alona S. Sekan
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena S. Myronycheva
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | - Olov Karlsson
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | | | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|