1
|
Wang W, Chen Y, Ye H, Dong Z, Zhang C, Feng D, Cao Q, Liang S, Zuo J. N-acyl homoserine lactonase attenuates the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:334-342. [PMID: 37635927 PMCID: PMC10448016 DOI: 10.1016/j.aninu.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase (AHLase) on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. In vitro study was firstly conducted to examine if AHLase treatment could attenuate the virulence of S. typhimurium. Then, an in vivo experiment was performed by allocating 240 broiler chicks at 1 d old into 3 groups (8 replicates per group): negative control (NC), positive control (PC), and PC supplemented with 10,000 U/kg AHLase. All chicks except those in NC were orally challenged by S. typhimurium from 8 to 10 d of age. Parameters were measured on d 11 and 21. The results showed that treatment with 1 U/mL AHLase suppressed the biofilm-forming ability (including biofilm biomass, extracellular DNA secretion and biofilm formation-related gene expression), together with swarming motility and adhesive capacity of S. typhimurium. Supplemental 10,000 U/kg AHLase counteracted S. typhimurium-induced impairments (P < 0.05) in broiler growth performance (including final body weight, average daily gain and average daily feed intake) during either 1-11 d or 12-21 d, and increases (P < 0.05) in the indexes of liver, spleen and bursa of Fabricius on d 11, together with reductions (P < 0.05) in ileal villus height and its ratio to crypt depth on both d 11 and 21. AHLase addition also normalized the increased (P < 0.05) mRNA expression of ileal occludin on both d 11 and 21 in S. typhimurium-challenged broilers. However, neither S. typhimurium challenge nor AHLase addition altered (P > 0.05) serum diamine oxidase activity of broilers. Noticeably, S. typhimurium challenge caused little change in the mRNA expression of ileal inflammatory cytokines except for an increase (P < 0.05) in interleukin-8 expression on d 11, whereas AHLase addition normalized (P < 0.05) this change. In conclusion, AHLase treatment could attenuate the virulence and pathogenicity of S. typhimurium, thus contributing to alleviate S. typhimurium-induced growth retardation and intestinal damages in broilers.
Collapse
Affiliation(s)
| | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Improved understanding of biofilm development by Piscirickettsia salmonis reveals potential risks for the persistence and dissemination of piscirickettsiosis. Sci Rep 2020; 10:12224. [PMID: 32699383 PMCID: PMC7376020 DOI: 10.1038/s41598-020-68990-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/30/2020] [Indexed: 02/03/2023] Open
Abstract
Piscirickettsia salmonis is the causative agent of piscirickettsiosis, a disease with high socio-economic impacts for Chilean salmonid aquaculture. The identification of major environmental reservoirs for P. salmonis has long been ignored. Most microbial life occurs in biofilms, with possible implications in disease outbreaks as pathogen seed banks. Herein, we report on an in vitro analysis of biofilm formation by P. salmonis Psal-103 (LF-89-like genotype) and Psal-104 (EM-90-like genotype), the aim of which was to gain new insights into the ecological role of biofilms using multiple approaches. The cytotoxic response of the salmon head kidney cell line to P. salmonis showed interisolate differences, depending on the source of the bacterial inoculum (biofilm or planktonic). Biofilm formation showed a variable-length lag-phase, which was associated with wider fluctuations in biofilm viability. Interisolate differences in the lag phase emerged regardless of the nutritional content of the medium, but both isolates formed mature biofilms from 288 h onwards. Psal-103 biofilms were sensitive to Atlantic salmon skin mucus during early formation, whereas Psal-104 biofilms were more tolerant. The ability of P. salmonis to form viable and mucus-tolerant biofilms on plastic surfaces in seawater represents a potentially important environmental risk for the persistence and dissemination of piscirickettsiosis.
Collapse
|
3
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
4
|
Cadena M, Kelman T, Marco ML, Pitesky M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods 2019; 8:E275. [PMID: 31336660 PMCID: PMC6678331 DOI: 10.3390/foods8070275] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023] Open
Abstract
Foodborne pathogens such as Salmonella that survive cleaning and disinfection during poultry processing are a public health concern because pathogens that survive disinfectants have greater potential to exhibit resistance to antibiotics and disinfectants after their initial disinfectant challenge. While the mechanisms conferring antimicrobial resistance (AMR) after exposure to disinfectants is complex, understanding the effects of disinfectants on Salmonella in both their planktonic and biofilm states is becoming increasingly important, as AMR and disinfectant tolerant bacteria are becoming more prevalent in the food chain. This review examines the modes of action of various types of disinfectants commonly used during poultry processing (quaternary ammonium, organic acids, chlorine, alkaline detergents) and the mechanisms that may confer tolerance to disinfectants and cross-protection to antibiotics. The goal of this review article is to characterize the AMR profiles of Salmonella in both their planktonic and biofilm state that have been challenged with hexadecylpyridinium chloride (HDP), peracetic acid (PAA), sodium hypochlorite (SHY) and trisodium phosphate (TSP) in order to understand the risk of these disinfectants inducing AMR in surviving bacteria that may enter the food chain.
Collapse
Affiliation(s)
- Myrna Cadena
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA
| | - Todd Kelman
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA
| | - Maria L Marco
- UC Davis, Department of Food Science and Technology, One Shields Ave, Davis, CA 95616, USA
| | - Maurice Pitesky
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Characterization of the Fouling Layer on the Membrane Surface in a Membrane Bioreactor: Evolution of the Foulants' Composition and Aggregation Ability. MEMBRANES 2019; 9:membranes9070085. [PMID: 31315190 PMCID: PMC6680539 DOI: 10.3390/membranes9070085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
In this study, the characteristics of membrane foulants were analyzed with regard to morphology, composition, and aggregation ability during the three stages of transmembrane pressure (TMP) development (fast-slow-fast rise in TMP) in a steady operational membrane bioreactor (MBR). The results obtained show that the fouling layer at the slow TMP-increase stage possessed a higher average roughness (71.27 nm) and increased fractal dimension (2.33), which resulted in a low membrane fouling rate (0.87 kPa/d). A higher extracellular DNA (eDNA) proportion (26.12%) in the extracellular polymeric substances (EPS) resulted in both higher zeta potential (-23.3 mV) and higher hydrophobicity (82.3%) for initial foulants, which induced and increased the protein proportion in the subsequent fouling layer (74.11%). Furthermore, the main composition of the EPS shifted from protein toward polysaccharide dominance in the final fouling layer. The aggregation test confirmed that eDNA was essential for foulant aggregation in the initial fouling layer, whereas ion interaction significantly affected foulant aggregation in the final fouling layer.
Collapse
|