1
|
Montazeri-Najafabadi B, Doosti A, Kiani J. Long non-coding RNA UCA1 Knockdown Assisted by CRISPR/Cas9 in Female Cancer Cell Lines Increases Mir-143 Tumor-Suppressor. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:934-946. [PMID: 39444484 PMCID: PMC11493584 DOI: 10.18502/ijph.v53i4.15571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2023] [Indexed: 10/25/2024]
Abstract
Background The lncRNAs has been linked to several malignancies, including breast cancer. Our objective was to investigate the impact of urothelial carcinoma associated 1 (UCA1) on cellular growth and death by a CRISPR/Cas9 knockdown technique. Methods In 2020, the CHOPCHOP program was utilized to design two sgRNAs targeting the UCA gene. sgRNA1 and sgRNA2 were inserted into two different CRISPR plasmids to produce two recombinant plasmids. These recombinant plasmids were simultaneously transfected into MCF-7 and MDA-MB 231 carcinoma of the breast cells. Proliferation and apoptosis were compared using the MTT test, CCK-8 assay, and flow cytometry evaluation. RNA-hybrid software, quantitative reverse transcription PCR, and luciferase assays were utilized to confirm the relationship between UCA1 and miR-143. Results Proliferated cells were less active in MTT and CCK-8 tests and fellow cytometry analysis. The PX459-sgRNA1,2 group had elevated levels of the cancer biomarker Caspase-3 gene expression (P<0.001). When WT-UCA1 and miR-143 were co-transfected, the luciferase activity was drastically decreased. Conclusion One very effective method of regulating cellular proliferation in vitro is the deletion of UCA1, which CRISPR/Cas9 accomplishes.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jafar Kiani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
4
|
Haghighi N, Doosti A, Kiani J. Evaluation of Apoptosis, Cell Proliferation and Cell Cycle Progression by Inactivation of the NEAT1 Long Noncoding RNA in a Renal Carcinoma Cell Line Using CRISPR/Cas9. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3180. [PMID: 36811109 PMCID: PMC9938936 DOI: 10.30498/ijb.2022.310632.3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/06/2022] [Indexed: 02/24/2023]
Abstract
Background Long noncoding RNAs (lncRNAs) play an important role in cellular mechanisms including transcription, translation, and apoptosis. NEAT1 is one of the essential types of lncRNAs in humans that can bind to active genes and modify their transcription. NEAT1 upregulation in various forms of cancer such as kidney cancer has been reported. Kidney cancer accounts for approximately 3% of all cancers worldwide and occurs almost twice as often in men as in women. Objectives This study has been performed to knockout the NEAT1 gene using the CRISPR/Cas9 technique in the Renal Cell Carcinoma ACHN cell line and to evaluate its effects on cancer progression and apoptosis. Material and Methods Two specific (single guide RNA (sgRNA) sequences for the NEAT1 gene were designed by CHOPCHOP software. These sequences were then cloned into plasmid pSpcas9, and recombinant vectors PX459-sgRNA1 and PX459-sgRNA2 were generated. ACHN cells were transfected using recombinant vectors carrying sgRNA1 and sgRNA2. The expression level of apoptosis-related genes was assessed by real-time PCR. Annexin, MTT and cell scratch tests were performed to evaluate the survival, proliferation, and migration of the knocked out cells, respectively. Results The results have shown successful knockout of the NEAT1 gene in the cells of the treatment group. Expressions of P53, BAK, BAX and FAS genes in the cells of the treatment group (NEAT1 knockout) showed significant increases in expression compared to the cells of the control group (P <0.01). Additionally, decreased expression of BCL2 and survivin genes was observed in knockout cells compared to the control group (p <0.05). In addition, in the cells of the treatment group compared to control cells, a significant decrease in cell viability, ability to migrate and cell growth and proliferation was observed. Conclusion Inactivation of the NEAT1 gene in ACHN cell line using CRISPR/Cas9 technology elevated apoptosis and reduced cell survival and proliferation which makes it a novel target for kidney cancer therapeutics.
Collapse
Affiliation(s)
- Nastaran Haghighi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jafar Kiani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
From Immunotoxins to Suicide Toxin Delivery Approaches: Is There a Clinical Opportunity? Toxins (Basel) 2022; 14:toxins14090579. [PMID: 36136517 PMCID: PMC9506092 DOI: 10.3390/toxins14090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Suicide gene therapy is a relatively novel form of cancer therapy in which a gene coding for enzymes or protein toxins is delivered through targeting systems such as vesicles, nanoparticles, peptide or lipidic co-adjuvants. The use of toxin genes is particularly interesting since their catalytic activity can induce cell death, damaging in most cases the translation machinery (ribosomes or protein factors involved in protein synthesis) of quiescent or proliferating cells. Thus, toxin gene delivery appears to be a promising tool in fighting cancer. In this review we will give an overview, describing some of the bacterial and plant enzymes studied so far for their delivery and controlled expression in tumor models.
Collapse
|
6
|
Samimi-Dehkordi N, Taheri G, Afzali S, Sazegar H, Shakeri F. Co-expression network analysis for renal cell carcinoma genes and in vitro confirmation of their expression in cell model in the presence of curcumin. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|