1
|
Hostačná L, Mašlanková J, Pella D, Hubková B, Mareková M, Pella D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. J Cardiovasc Dev Dis 2024; 11:258. [PMID: 39330316 PMCID: PMC11432239 DOI: 10.3390/jcdd11090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Non-invasive possibilities of predicting cardiovascular risk and monitoring the treatment and progression of coronary artery disease (CAD) are important subjects of cardiovascular research. Various inflammatory markers have been identified as potential biomarkers of CAD, including interleukin-6 (IL-6), lipocalin-2 (LCN-2), growth differentiation factor 15 (GDF-15), and T cell immunoglobulin and mucin domain-3 (TIM-3). This research aims to identify their utility in the investigation of CAD severity and progression. The basic anthropometric parameters, as well as the levels of urea, creatinine, CRP, leukocytes, fibrinogen, and biomarkers of inflammation, were measured in 130 patients who underwent coronary angiography. In male patients, divided according to findings on coronary angiography, we observed an increasing expression of GDF-15 with increasing stenosis (with worsening findings). In females, we observed increasing fibrinogen expression with increasing stenosis, i.e., findings on coronary angiography. Correlation analysis did not confirm the relationship between TIM-3, LCN and 2, IL-6 and the severity of findings obtained by coronary angiography; however, the correlation of TIM-3 and LCN-2 expression was positive with the finding, and the correlation of IL-6 with the finding was surprisingly negative. Understanding the role of these inflammatory markers in CAD can be helpful in risk stratification, guiding therapeutic strategies, and monitoring treatment responses in patients with CAD.
Collapse
Affiliation(s)
- Lenka Hostačná
- Department of Clinical Biochemistry, Medirex, a.s., Magnezitárska 2/C, 040 13 Košice, Slovakia
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Dominik Pella
- 1st Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daniel Pella
- 2nd Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
2
|
Zabransky DJ, Chhabra Y, Fane ME, Kartalia E, Leatherman JM, Hüser L, Zimmerman JW, Delitto D, Han S, Armstrong TD, Charmsaz S, Guinn S, Pramod S, Thompson ED, Hughes SJ, O'Connell J, Egan JM, Jaffee EM, Weeraratna AT. Fibroblasts in the Aged Pancreas Drive Pancreatic Cancer Progression. Cancer Res 2024; 84:1221-1236. [PMID: 38330147 DOI: 10.1158/0008-5472.can-24-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.
Collapse
Affiliation(s)
- Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yash Chhabra
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mitchell E Fane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, Pennsylvania
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James M Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Hüser
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Todd D Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sneha Pramod
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Jennifer O'Connell
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Johns Hopkins Cancer Convergence Institute, Baltimore, Maryland
| | - Ashani T Weeraratna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|