1
|
Cytotoxic effects of different detergent containing children's toothpastes on human gingival epithelial cells. BMC Oral Health 2022; 22:66. [PMID: 35264124 PMCID: PMC8908683 DOI: 10.1186/s12903-022-02089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background This study aimed to evaluate possible cytotoxic effects to gingival epithelial cells exposed to children toothpastes containing different detergent. Methods Tissues required for the isolation of human gingival epithelial cells were obtained by biopsy during the extraction of the impacted third molar tooth. Toothpaste solutions of different concentrations were prepared from five different children’s toothpastes with different detergent contents. Isolated gingival epithelial cells were stimulated with experimental groups consisting of toothpaste solutions (Colgate, Sensodyne, Splat, Nenedent, Perlodent) at different concentrations and a control group consisting of complete Dulbecco’s modified eagle medium. After the experiments, cell viability was evaluated using flow cytometry. 2 Way ANOVA was used to see the interaction effect of the main effects of toothpaste solution and concentration factors. Pairwise comparisons were made by Tukey post hoc tests. In the study, the significance level was taken as 0.05. Results As a result of the analysis, it was seen that the toothpaste solution and concentration factors and the interactions of these 2 factors were effective on the viable, early apoptotic, late apoptotic and necrotic cell rates. The statistically highest live cell ratios were detected in Splat’s toothpaste solutions (90.14% at 0.4% concentration) after the control group (90.82%) and the group with the lowest viability values was determined in Colgate group (75.74% at 0.4% concentration) (p < 0.05). Conclusions According to the results of the study, it was observed that toothpastes containing SLS affected the viability of cells more negatively than toothpastes with other detergent contents.
Collapse
|
2
|
Cui Y, Zhao F, Liu J, Wang X, Du J, Shi D, Chen K. Zedoary Guaiane-Type Sesquiterpenes-Eluting Stents Accelerate Endothelial Healing Without Neointimal Hyperplasia in a Porcine Coronary Artery Model. J Cardiovasc Pharmacol Ther 2017; 22:476-484. [PMID: 28269995 DOI: 10.1177/1074248417696819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: The effects of zedoary guaiane-type sesquiterpenes (ZGS)-based eluting stent (ZES) in accelerating reendothelialization and inhibiting neointimal hyperplasia were examined in a porcine coronary artery model. Methods: The ZES was prepared by polymer-free 316L stainless metal stents. Sirolimus-eluting stents (SES) and bare metal stents (BMS) with identical platforms were used as controls. Stents with 15 mm in length and 2.0 to 3.5 mm in diameter were implanted in porcine coronary arteries. Scanning electron microscopy (SEM) and histopathology were performed to assess the reendothelialization and neointimal hyperplasia. The 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-2H-tetrazoliumbromide assay and flow cytometry were used to assess the influence of ZGS on human umbilical vascular endothelial cells (HUVECs). Results: At 7 days, SEM showed that percentage of endothelial coverage area was 94.04% ± 5.01% for ZES, 47.59% ± 19.91% for SES ( P < .01 for ZES vs SES), and 59.58% ± 19.61% for BMS ( P < .05 for ZES vs BMS). At 28 days, the percentage of coverage area was 98.51% ± 1.86% for ZES, 86.18% ± 8.16% for SES ( P < .05 for ZES vs SES), and 94.26% ± 5.58% for BMS. Neointimal area and stenosis were significantly lower in ZES (1.07 ± 0.48 mm2, 27.66% ± 12.20%) compared to BMS (1.73 ± 0.69 mm2, 44.08% ± 15.03%, both P < .01, respectively), with no difference in SES (0.94 ± 0.12 mm2, 28.87% ± 6.00%, both P > .05, respectively). The ZGS also promoted HUVECs viability and improved HUVECs proliferation compared to sirolimus. Conclusion: The ZES accelerated reendothelialization and suppressed neointimal hyperplasia in a porcine coronary artery model, with beneficial effects on HUVECs.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiangang Liu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Wang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Farina VH, Lima APD, Balducci I, Brandão AAH. Effects of the medicinal plants Curcuma zedoaria and Camellia sinensis on halitosis control. Braz Oral Res 2012; 26:523-9. [PMID: 23019084 DOI: 10.1590/s1806-83242012005000022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/16/2012] [Indexed: 11/22/2022] Open
Abstract
Volatile sulphur compounds (VSC) are the gases mainly responsible for halitosis (bad breath). The aim of this research was to evaluate the effects of medicinal plants on halitosis control. Two commonly used plants were tested: Curcuma zedoaria and Camellia sinensis (green tea). These plants were prepared as an aqueous solution and used as mouthwashes, compared with a standard mouthwash of 0.12% chlorhexidine gluconate and a placebo (water). The experiment was conducted with 30 volunteers from the School of Dentistry of São Jose dos Campos, Univ. Estadual Paulista - UNESP, SP, Brazil. Each volunteer tested the four mouthwashes. The Cysteine Challenge Method, modified for this study, was used for initial breath standardization. Four breath assessments were conducted after volunteers rinsed orally with acetylcysteine: one before the test mouthwash was used; the second, one minute after its use; a third 90 minutes later; and the last 180 minutes later. The results showed that chlorhexidine gluconate lowered VSC production immediately, and that this effect lasted up to 3 hours, while the tested plants had immediate inhibitory effects but no residual inhibitory effects on VSC. We concluded that Curcuma zedoaria and Camellia sinensis, prepared as infusions and used as mouthwashes, did not have a residual neutralizing effect on VSC.
Collapse
Affiliation(s)
- Vitor Hugo Farina
- Department of Biosciences and Oral Diagnosis, School of Dentistry, Univ Estadual Paulista, São José dos Campos, SP, Brazil.
| | | | | | | |
Collapse
|