1
|
Song W, Zhang L, Cui X, Wang R, Ma J, Xu Y, Jin Y, Wang D, Lu Z. Nobiletin alleviates cisplatin-induced ototoxicity via activating autophagy and inhibiting NRF2/GPX4-mediated ferroptosis. Sci Rep 2024; 14:7889. [PMID: 38570541 PMCID: PMC10991266 DOI: 10.1038/s41598-024-55614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Nobiletin, a citrus polymethoxy flavonoid with antiapoptotic and antioxidative properties, could safeguard against cisplatin-induced nephrotoxicity and neurotoxicity. Cisplatin, as the pioneer of anti-cancer drug, the severe ototoxicity limits its clinical applications, while the effect of nobiletin on cisplatin-induced ototoxicity has not been identified. The current study investigated the alleviating effect of nobiletin on cisplatin-induced ototoxicity and the underlying mechanisms. Apoptosis and ROS formation were evaluated using the CCK-8 assay, Western blotting, and immunofluorescence, indicating that nobiletin attenuated cisplatin-induced apoptosis and oxidative stress. LC3B and SQSTM1/p62 were determined by Western blotting, qPCR, and immunofluorescence, indicating that nobiletin significantly activated autophagy. Nobiletin promoted the nuclear translocation of NRF2 and the transcription of its target genes, including Hmox1, Nqo1, and ferroptosis markers (Gpx4, Slc7a11, Fth, and Ftl), thereby inhibiting ferroptosis. Furthermore, RNA sequencing analysis verified that autophagy, ferroptosis, and the NRF2 signaling pathway served as crucial points for the protection of nobiletin against ototoxicity caused by cisplatin. Collectively, these results indicated, for the first time, that nobiletin alleviated cisplatin-elicited ototoxicity through suppressing apoptosis and oxidative stress, which were attributed to the activation of autophagy and the inhibition of NRF2/GPX4-mediated ferroptosis. Our study suggested that nobiletin could be a prospective agent for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Wenao Song
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Jingyu Ma
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
3
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
5
|
Some Ototoxic Drugs Destroy Cochlear Support Cells Before Damaging Sensory Hair Cells. Neurotox Res 2020; 37:743-752. [PMID: 31997155 DOI: 10.1007/s12640-020-00170-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
A wide variety of ototoxic drugs are capable of damaging the sensory hair cells in the mammalian cochlea resulting in permanent hearing loss. However, the toxic properties of these drugs suggest that some could potentially damage cochlear support cells as well. To test the hypothesis, we treated postnatal day three rat cochlear cultures with toxic doses of gentamicin, cisplatin, mefloquine, and cadmium. Gentamicin primarily destroyed the hair cells and disrupted the intercellular connection with the surrounding support cells. Gentamicin-induced hair cell death was initiated through the caspase-9 intrinsic apoptotic pathway followed by activation of downstream executioner caspase-3. In contrast, cisplatin, mefloquine, and cadmium initially damaged the support cells and only later damaged the hair cells. Support cell death was initiated through the caspase-8 extrinsic apoptotic pathway followed later by downstream activation of caspase-3. Cisplatin, mefloquine, and cadmium significantly reduced the expression of actin and laminin, in the extracellular matrix, leading to significant disarray of the sensory epithelium.
Collapse
|
6
|
Demirci S, Ozsaran Z, Celik HA, Aras AB, Aydin HH. The interaction between antioxidant status and cervical cancer: A case control study. TUMORI JOURNAL 2018; 97:290-5. [DOI: 10.1177/030089161109700306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background To compare the antioxidant status of cervical cancer patients with healthy controls and to assess the antioxidant levels before and after radiotherapy or radiochemotherapy Methods and study design Antioxidant levels (glutathione, glutathione peroxidase, superoxide dismutase, and malondialdehyde) were measured in 35 patients with cervical cancer and 35 age-matched healthy controls. Blood samples were collected twice (before and after treatment) from cervical cancer patients and once from healthy control subjects. Results In the patient group, pre-radiotherapy glutathione and glutathione peroxidase levels were significantly lower (P<0.01 and P<0.0001, respectively) than the control group. Pre-radiotherapy levels of superoxide dismutase were significantly higher in cancer patients (P<0.01). In general, no difference was observed between pre- and post-radiotherapy antioxidant levels in cancer patients. However, when post-radiotherapy glutathione levels were analyzed, patients who did not respond to treatment had significantly higher levels than those who did respond (P <0.01). Conclusions Levels of antioxidants significantly differed between the patients with cervical cancer and the controls, and no change in antioxidant levels was observed after treatment. Moreover, further studies evaluating the predictive value of glutathione levels on treatment response are warranted.
Collapse
Affiliation(s)
- Senem Demirci
- Department of Radiation Oncology, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Zeynep Ozsaran
- Department of Radiation Oncology, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Handan Ak Celik
- Department of Medical Biochemistry, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Arif Bulent Aras
- Department of Radiation Oncology, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
7
|
Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: In vitro and in vivo correlation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:965-976. [PMID: 26733264 DOI: 10.1016/j.nano.2015.12.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED 6α-Methylprednisolone-loaded surfactant-free nanoparticles have been developed to palliate cisplatin ototoxicity. Nanoparticles were based on two different amphiphilic pseudo-block copolymers obtained by free radical polymerization and based on N-vinyl pyrrolidone and a methacrylic derivative of α-tocopheryl succinate or α-tocopherol. Copolymers formed spherical nanoparticles by nanoprecipitation in aqueous media that were able to encapsulate 6α-methylprednisolone in their inner core. The obtained nanovehicles were tested in vitro using HEI-OC1 cells and in vivo in a murine model. Unloaded nanoparticles were not able to significantly reduce the cisplatin ototoxicity. Loaded nanoparticles reduced cisplatin-ototoxicity in vitro being more active those based on the methacrylic derivative of vitamin E, due to their higher encapsulation efficiency. This formulation was able to protect hair cells in the base of the cochlea, having a positive effect in the highest frequencies tested in a murine model. A good correlation between the in vitro and the in vivo experiments was found. FROM THE CLINICAL EDITOR Cisplatin is a commonly used chemotherapeutic agent against many cancers clinically. However, one of the significant side-effects remains ototoxicity. Here, the authors presented their data on using 6α-methylprednisolone-loaded nanoparticles in the reduction of ototoxicity in in-vitro and in-vivo experiments. Early promising results should enable further refinement of adopting this new approach in future experiments.
Collapse
|
8
|
Hearing Loss After Cisplatin: Oxidative Stress Pathways and Potential for Protection. FREE RADICALS IN ENT PATHOLOGY 2015. [DOI: 10.1007/978-3-319-13473-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Effect of intratympanic dimethyl sulphoxide (DMSO) in an in vivo model of cisplatin-related ototoxicity. Eur Arch Otorhinolaryngol 2014; 271:3121-6. [DOI: 10.1007/s00405-014-2957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022]
|
10
|
Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. Eur Arch Otorhinolaryngol 2012; 269:2455-9. [DOI: 10.1007/s00405-012-2029-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 04/20/2012] [Indexed: 12/20/2022]
|
11
|
Mitazaki S, Honma S, Suto M, Kato N, Hiraiwa K, Yoshida M, Abe S. Interleukin-6 plays a protective role in development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors. Life Sci 2011; 88:1142-8. [PMID: 21570986 DOI: 10.1016/j.lfs.2011.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
AIMS Cisplatin, a major chemotherapeutic agent, accumulates in proximal tubules of the kidneys and causes acute renal failure dose-dependently. We previously reported that cisplatin induced more severe renal dysfunction in interleukin-6 (IL-6) knockout (IL-6(-/-)) mice than in wild-type (WT) mice. Expression of a pro-apoptotic protein was significantly increased with cisplatin in IL-6(-/-) mice compared to that in WT mice. IL-6, locally expressed in renal tubular cells after cisplatin administration, prevents the development of renal dysfunction at an early stage. In the present study, we focused on downstream signals of IL-6 and oxidative stress induced by cisplatin in order to evaluate the protective role of IL-6 in the development of acute renal failure. MAIN METHODS WT and IL-6(-/-) mice were given either cisplatin (30 mg/kg) or saline intraperitoneally. Blood and kidney samples were collected at 24h and 72 h after cisplatin administration. The changes in expression of 4-hydroxy-2-nonenal protein (4-HNE, oxidative stress marker) and cyclooxygenase-2 (cox-2), activities of superoxide dismutases and caspase-3, and phosphorylation of extracellular signal-regulated kinase (ERK) were examined. KEY FINDINGS Cisplatin increased the expression of 4-HNE and cox-2, and phosphorylation of ERK in IL-6(-/-) mice than in WT mice. On the other hand, activity of superoxide dismutase, an anti-oxidative enzyme, was significantly decreased in the kidney obtained from IL-6(-/-) mice after cisplatin administration. SIGNIFICANCE Our findings suggest that IL-6 plays a protective role in the development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors.
Collapse
Affiliation(s)
- Satoru Mitazaki
- Laboratory of Forensic Toxicology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Feng H, Yin SH, Tang AZ. Blocking caspase-3-dependent pathway preserves hair cells from salicylate-induced apoptosis in the guinea pig cochlea. Mol Cell Biochem 2011; 353:291-303. [PMID: 21503676 DOI: 10.1007/s11010-011-0798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
In the present study, we aim to explore whether the caspase-3-dependent pathway is involved in the apoptotic cell death that occurs in the hair cells (HCs) of guinea pig cochlea following a salicylate treatment. Guinea pigs received sodium salicylate (Na-SA), at a dose of 200 mg·kg(-1)·d(-1) i.p., as a vehicle for 5 consecutive days. In some experiments, N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zDEVD-FMK), a specific apoptosis inhibitor, was directly applied into the cochlea via the round window niche (RWN) prior to salicylate treatment for determination of caspase-3 activation. Alterations in auditory function were evaluated with auditory brainstem responses (ABR) thresholds. Caspase-3 activity was determined by measuring the proteolytic cleavage product of caspase-3 (N-terminated peptide substrate). DNA fragmentation within the nuclei was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Ultrastructure variation in the target cell was assessed by electron microscopy (EM). Salicylate treatment initiated an obvious elevation in ABR thresholds with a maximum average shift of 60 dB sound pressure level (SPL), and caused significant apoptosis in both inner (IHCs) and outer (OHCs) hair cells resulted from an evident increasing in immunoreactivity to caspase-3 protease. Transmission electron microscopy (TEM) displayed chromatin condensation and nucleus margination accompanied by cell body shrinkage in the OHCs, but not in the IHCs. Scanning electron microscopy (SEM) showed breakdown, fusion, and loss in the stereociliary bundles at the apex of OHCs rather than IHCs. zDEVD-FMK pretreatment prior to salicylate injection substantially attenuated an expression of the apoptotic protease and protected HCs against apoptotic death, followed by a moderate relief in the thresholds of ABR, an alleviation in the submicroscopic structure was also identified. In particular, disorientation and insertion in the hair bundles at the apex of OHCs was exhibited though no classic apoptotic change found. The above changes were either prevented or significantly attenuated by zDEVD-FMK. These findings indicate that salicylate could damage cochlear hair cells via inducing apoptosis associated with caspase-3 activation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Apoptosis/drug effects
- Auditory Threshold/drug effects
- Caspase 3/metabolism
- Caspase Inhibitors
- Cysteine Proteinase Inhibitors/pharmacology
- DNA Fragmentation/drug effects
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/enzymology
- Hair Cells, Auditory/ultrastructure
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/enzymology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/enzymology
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- In Situ Nick-End Labeling
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Oligopeptides/pharmacology
- Salicylates/toxicity
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Hao Feng
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, 22# Shuangyong Road, Nanning, 530021 Guangxi, People's Republic of China
| | | | | |
Collapse
|