1
|
Sun X, Gao D, Shen J, Zhu Q, Wang L, Ma X, Wang W, Chen X, Zhang Q, Jin Y, Chen J, Yang J. Potential vestibular pathway impairment in children with recurrent vertigo: An investigation through air-conducted sound and galvanic vestibular stimulation-triggered vestibular evoked myogenic potentials. Front Neurol 2022; 13:997205. [PMID: 36299274 PMCID: PMC9588909 DOI: 10.3389/fneur.2022.997205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aims to investigate the potential vestibular pathway impairment through vestibular evoked myogenic potentials (VEMPs) and to explore the pathophysiological significance of these instrument-based findings in children with recurrent vertigo. Materials and methods The clinical data of 21 children (mean age 4.67 ± 1.39 years) diagnosed as RVC who met the inclusion criteria of the Bárány Society and 29 healthy children (mean age 4.83 ± 1.34 years) enrolled as the control group from February 2021 to December 2021 were collected and analyzed retrospectively. All the subjects underwent both cervical VEMP (cVEMP) and ocular VEMP (oVEMP) triggered by air-conducted sound (ACS) and galvanic vestibular stimulation (GVS), respectively. The elicit rate, latency, and amplitude asymmetry ratio (AAR) of ACS-cVEMP, ACS-oVEMP, GVS-cVEMP, and GVS-oVEMP were analyzed. Results (1) The elicit rates of ACS-cVEMP and ACS-oVEMP were similar in the two groups (P > 0.05), as well as GVS-cVEMP and GVS-oVEMP (P > 0.05). (2) P1 and N1 latencies of ACS-cVEMP and GVS-cVEMP in the RVC group were longer than those in the control group (P < 0.05). (3) The N1 latency of ACS-oVEMP in the RVC group was shorter than that in the control group (P < 0.05), while there was no significant difference in the P1 latency of ACS-oVEMP (P > 0.05). The N1 and P1 latencies of GVS-oVEMP were not significantly different (P > 0.05). (4) There was no statistical difference in the AAR of ACS-cVEMP and GVS-cVEMP. Although there was an increased AAR of ACS-oVEMP in the RVC group (P < 0.05), the AAR was within the normal range. However, no statistical difference was found in the AAR of GVS-oVEMP in the two groups (P > 0.05). Conclusion The latencies of ACS-cVEMP and GVS-cVEMP in children with recurrent vertigo were significantly prolonged compared with those in healthy children, and there was no difference in elicit rates of ACS-cVEMP and GVS-cVEMP, suggesting that there might be potential impairment in the inferior vestibular nerve and the subsequent nerve conduction pathway in RVC.
Collapse
Affiliation(s)
- Xiayu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiali Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qi Zhu
- Department of Otorhinolaryngology-Head & Neck Surgery, Yuyao People's Hospital, Yuyao, China
| | - Lu Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaobao Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wei Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiangping Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qing Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yulian Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Yulian Jin
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jianyong Chen
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang
| |
Collapse
|
2
|
Xu Z, Wang Z, Zhong B, Wang M, Fan X, Ren C, Qi M, Lin Y, Zha D. Effects of aging on ocular vestibular-evoked myogenic potential using ER-3A insert earphone and B81 bone vibrator. Front Neurol 2022; 13:956996. [PMID: 36090861 PMCID: PMC9453035 DOI: 10.3389/fneur.2022.956996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeAging is a process associated with degeneration and dysfunction of peripheral vestibular system or apparatus. This study aimed to investigate the influence of aging on ocular vestibular-evoked myogenic potential (oVEMP) response rates and recording parameters using the B81 bone vibrator and compare them with air conduction stimuli (ACS) oVEMP response characteristics.MethodsIn 60 healthy participants aged 10–71 years (mean age 39.9; 29 male participants), the oVEMP response was elicited using a B81 bone vibrator and an ER-3A insert earphone. The effects of age and stimulus on oVEMP response rates and recording parameters were evaluated.ResultsResponse rates and amplitudes declined with aging using either ACS or bone-conducted vibration (BCV) stimulation, particularly in individuals over 60 years of age, whereas thresholds increased and N1 latencies were prolonged. BCV showed fewer risks of absent oVEMP response than ACS (p = 0.002). BCV acquired higher amplitudes (p < 0.001), lower thresholds, and shorter N1 and P1 latencies (all p < 0.001) than ACS.ConclusionsThe absence of an oVEMP response may be attributed to aging rather than a concurrent vestibular disorder. B81-BCV likely produces higher mechanical drives to the vestibular hair cells at safer and non-traumatic levels compared with ACS and therefore may be more likely to evoke a response in the elderly cohort, whose vestibular function and mechanical sensitivity have declined. Thus, B81-BCV stimulation is more effective and safer to elicit oVEMPs, and it should be recommended when ACS fails in the clinic, particularly in the elderly population.
Collapse
Affiliation(s)
- Zhuo Xu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Zhilin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Bo Zhong
- Division of Mechanics and Acoustics, National Institute of Metrology, Beijing, China
| | - Minjiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xiaoqin Fan
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Cuncun Ren
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Meihao Qi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ying Lin
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
- *Correspondence: Ying Lin
| | - Dingjun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
- Dingjun Zha
| |
Collapse
|
3
|
Abstract
OBJECTIVES To evaluate the effects of narrow band CE-Chirp (NB CE-Chirp) on the amplitudes and latencies in ocular vestibular evoked myogenic potentials (oVEMPs) at 500 and 1000 Hz in comparison with tone burst (TB). DESIGN Twenty-one healthy volunteers were included in the study and tested in air conduction with a "belly-tendon" montage. Recording conditions were randomized for each participant and each modality was tested twice to check the reproducibility of the procedure. RESULTS NB CE-Chirps at 500 Hz revealed larger n1-p1 amplitudes than 500 Hz TBs (p = .001), which were also larger than NB CE-Chirps and TBs at 1000 Hz (p = .022, p < .001, respectively). Besides, n1 and p1 latencies were shorter in NB CE-Chirp than in TB at 500 Hz (p < .001) and 1000 Hz (p < .001). The older the participants, the lower the amplitudes (p = .021, p = .031) and the longer the n1 (p = .030, p = .025) and p1 latencies (p < .001, p < .001) in 500 Hz NB CE-Chirps and 500 Hz TBs. Interaural asymmetry ratios were slightly higher in 500 Hz NB CE-Chirps as compared to 500 Hz TBs (p = .013). CONCLUSIONS NB CE-Chirps at 500 Hz improved the amplitudes of waveforms in oVEMPs. As for TBs with clicks before, enhancing oVEMPs amplitudes is an essential step to distinguish a healthy person from a patient with either utricular or its related pathways disorder and potentially minimize the risk of cochlear damages. Additional studies including a higher number of healthy participants and patients with vestibular disorders are required to confirm this hypothesis. The large interindividual variability of interaural asymmetry ratios in NB CE-Chirp and in TB at 500 Hz could be explained by the selected montage.
Collapse
|
4
|
Etiologic distribution of dizziness and vertigo in a referral-based dizziness clinic in South Korea. J Neurol 2020; 267:2252-2259. [PMID: 32300888 DOI: 10.1007/s00415-020-09831-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023]
Abstract
This study aimed to determine the etiologic distribution of dizziness and vertigo in a referral-based dizziness clinic in South Korea. We analyzed the diagnoses of 21,166 consecutive dizzy patients (12,691 women, mean age = 57.9 ± 15.7, age range = 3-97) seen from 2003 to 2019 using a registry and medical records. Overall, dizziness and vertigo were more common in women (60.0%, CI 0.59-0.61) than in men without a difference in age (57.7 ± 15.5 vs. 58.1 ± 16.1, p = 0.094). Benign paroxysmal positional vertigo (BPPV, 24.1%) was the most common cause of dizziness/vertigo, followed by psychiatric or persistent postural perceptual dizziness (20.8%), vascular disorders (12.9%), vestibular migraine (10.2%), Meniere's disease (7.2%), and vestibular neuritis (5.4%). These six disorders comprised more than 80% of all disorders. The etiology could not be determined in 5.0%, and more than one etiology was found in 14.1%. Vestibular migraine was the most common disorder in children and adolescents (< 19 years), psychiatric or persistent postural perceptual dizziness (26.3%) in the adults (19-64 years), and BPPV (28.2%) in the elderly (≥ 65 years). This etiologic distribution is similar to that reported in another country, and indicates no significant differences in the proportion of diseases causing dizziness and vertigo across different ethnic groups. This study provides valuable information to establish healthcare policy for dizziness and vertigo.
Collapse
|
5
|
Ji L, Zhai S. Aging and the peripheral vestibular system. J Otol 2018; 13:138-140. [PMID: 30671091 PMCID: PMC6335476 DOI: 10.1016/j.joto.2018.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022] Open
Abstract
Whereas much has been learned about age-related auditory changes in the inner ear, relatively little is known about the aging effects on the vestibular part of the inner ear-the peripheral vestibular system. Here we review relevant literature with regard to the prevalence of vestibular dysfunction, vestibular functional and structural changes in the elderly. The prevalence of vestibular dysfunction increases with age. Functionally, as age increases, VEMP amplitudes decrease, VEMP thresholds increase, VOR gain of HIT decreases. Due to the complexity of the vestibular system, variations in subject age and measurement techniques, findings in VEMP latency and caloric tests are conflicting. To address this, a direct measure of the peripheral vestibular system should be applied. Structurally, age-related loss in vestibular ganglion and otoconia have been noted; hair cell changes are not well defined; while subcellular changes remain to be explored. Defining how the onset of vestibular dysfunction correlates with structural degeneration will offer insights into the mechanisms underlying vestibular aging.
Collapse
Affiliation(s)
- Lingchao Ji
- Medical School of Chinese PLA, Beijing, China
| | - Suoqiang Zhai
- Medical School of Chinese PLA, Beijing, China.,Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Liu P, Gupta N, Jing Y, Collie ND, Zhang H, Smith PF. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum. Neuroscience 2017; 348:273-287. [PMID: 28238850 DOI: 10.1016/j.neuroscience.2017.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity.
Collapse
Affiliation(s)
- P Liu
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand.
| | - N Gupta
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Y Jing
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - N D Collie
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - H Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P F Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand; The Eisdell Moore Centre, University of Auckland, New Zealand
| |
Collapse
|
7
|
Aitken P, Benoit A, Zheng Y, Philoxene B, Le Gall A, Denise P, Besnard S, Smith PF. Hippocampal and striatal M1-muscarinic acetylcholine receptors are down-regulated following bilateral vestibular loss in rats. Hippocampus 2016; 26:1509-1514. [DOI: 10.1002/hipo.22651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
| | - Alice Benoit
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| | - Bruno Philoxene
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Anne Le Gall
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Pierre Denise
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Stephane Besnard
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Paul F. Smith
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| |
Collapse
|
8
|
Smith PF. Age-Related Neurochemical Changes in the Vestibular Nuclei. Front Neurol 2016; 7:20. [PMID: 26973593 PMCID: PMC4776078 DOI: 10.3389/fneur.2016.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences and Brain Health Research Centre, University of Otago , Dunedin , New Zealand
| |
Collapse
|
9
|
Colebatch JG, Rosengren SM, Welgampola MS. Vestibular-evoked myogenic potentials. HANDBOOK OF CLINICAL NEUROLOGY 2016; 137:133-155. [PMID: 27638068 DOI: 10.1016/b978-0-444-63437-5.00010-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vestibular-evoked myogenic potential (VEMP) is a short-latency potential evoked through activation of vestibular receptors using sound or vibration. It is generated by modulated electromyographic signals either from the sternocleidomastoid muscle for the cervical VEMP (cVEMP) or the inferior oblique muscle for the ocular VEMP (oVEMP). These reflexes appear to originate from the otolith organs and thus complement existing methods of vestibular assessment, which are mainly based upon canal function. This review considers the basis, methodology, and current applications of the cVEMP and oVEMP in the assessment and diagnosis of vestibular disorders, both peripheral and central.
Collapse
Affiliation(s)
- J G Colebatch
- Neuroscience Research Australia and Department of Neurology, Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - S M Rosengren
- Neurology Department, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, Australia
| | - M S Welgampola
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney Australia
| |
Collapse
|
10
|
Weber KP, Rosengren SM. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs). Curr Neurol Neurosci Rep 2015; 15:22. [PMID: 25773001 DOI: 10.1007/s11910-015-0548-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the last years, vestibular-evoked myogenic potentials (VEMPs) have been established as clinical tests of otolith function. Complementary to the cervical VEMPs, which assess mainly saccular function, ocular VEMPs (oVEMPs) test predominantly utricular otolith function. oVEMPs are elicited either with air-conducted (AC) sound or bone-conducted (BC) skull vibration and are recorded from beneath the eyes during up-gaze. They assess the vestibulo-ocular reflex and are a crossed excitatory response originating from the inferior oblique eye muscle. Enlarged oVEMPs have proven to be sensitive for screening of superior canal dehiscence, while absent oVEMPs indicate a loss of superior vestibular nerve otolith function, often seen in vestibular neuritis (VN) or vestibular Schwannoma.
Collapse
Affiliation(s)
- Konrad P Weber
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland,
| | | |
Collapse
|
11
|
Maheu M, Houde MS, Landry SP, Champoux F. The Effects of Aging on Clinical Vestibular Evaluations. Front Neurol 2015; 6:205. [PMID: 26441824 PMCID: PMC4585272 DOI: 10.3389/fneur.2015.00205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cervical-VEMP (cVEMP) and ocular-VEMP (oVEMP), then the caloric and video-head impulse test (vHIT) methods for semicircular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semicircular canals function.
Collapse
Affiliation(s)
- Maxime Maheu
- École d'orthophonie et d'audiologie, Université de Montréal , Montréal, QC , Canada ; Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Institut Raymond-Dewar (IRD) , Montréal, QC , Canada
| | - Marie-Soleil Houde
- École d'orthophonie et d'audiologie, Université de Montréal , Montréal, QC , Canada
| | - Simon P Landry
- École d'orthophonie et d'audiologie, Université de Montréal , Montréal, QC , Canada ; Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Institut Raymond-Dewar (IRD) , Montréal, QC , Canada
| | - François Champoux
- École d'orthophonie et d'audiologie, Université de Montréal , Montréal, QC , Canada ; Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Institut Raymond-Dewar (IRD) , Montréal, QC , Canada
| |
Collapse
|
12
|
Kumar K, Bhat JS, Sequeira NM, Bhojwani KM. Ageing Effect on Air-Conducted Ocular Vestibular Evoked Myogenic Potential. Audiol Res 2015; 5:121. [PMID: 26779326 PMCID: PMC4698599 DOI: 10.4081/audiores.2015.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/19/2015] [Accepted: 08/01/2015] [Indexed: 11/23/2022] Open
Abstract
One of the recent diagnostic tests to assess the function of otolithic organs is through vestibular evoked myogenic potential (VEMP) testing. There are equivocal findings on effect of aging on ocular VEMP (oVEMP) parameters with reference to latencies. Hence this study was taken up to investigate the age related changes in oVEMP parameters. This present study considered 30 participants in each age group i.e., young adults, middle-aged adults and older adults. oVEMP were recorded using insert earphone at 100dBnHL at 500hZ short duration tone burst. The results showed in older adult significant difference in response rate, latencies and amplitude as compared to young and middle adult. Hence age should be taken into consideration when interpreting oVEMP results.
Collapse
Affiliation(s)
- Kaushlendra Kumar
- Department of Audiology and Speech Language Pathology, Manipal University , Manipal, Karnataka, India
| | - Jayashree S Bhat
- Department of Audiology and Speech Language Pathology, Manipal University , Manipal, Karnataka, India
| | - Nimalka Maria Sequeira
- Department of Audiology and Speech Language Pathology, Manipal University , Manipal, Karnataka, India
| | - Kiran M Bhojwani
- Department of E.N.T, Kasturba Medical College Mangalore, Manipal University , Manipal, Karnataka, India
| |
Collapse
|
13
|
Vignaux G, Besnard S, Denise P, Elefteriou F. The Vestibular System: A Newly Identified Regulator of Bone Homeostasis Acting Through the Sympathetic Nervous System. Curr Osteoporos Rep 2015; 13:198-205. [PMID: 26017583 DOI: 10.1007/s11914-015-0271-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vestibular system is a small bilateral structure located in the inner ear, known as the organ of balance and spatial orientation. It senses head orientation and motion, as well as body motion in the three dimensions of our environment. It is also involved in non-motor functions such as postural control of blood pressure. These regulations are mediated via anatomical projections from vestibular nuclei to brainstem autonomic centers and are involved in the maintenance of cardiovascular function via sympathetic nerves. Age-associated dysfunction of the vestibular organ contributes to an increased incidence of falls, whereas muscle atrophy, reduced physical activity, cellular aging, and gonadal deficiency contribute to bone loss. Recent studies in rodents suggest that vestibular dysfunction might also alter bone remodeling and mass more directly, by affecting the outflow of sympathetic nervous signals to the skeleton and other tissues. This review will summarize the findings supporting the influence of vestibular signals on bone homeostasis, and the potential clinical relevance of these findings.
Collapse
Affiliation(s)
- G Vignaux
- Department of Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232-0575, USA
| | | | | | | |
Collapse
|
14
|
Kim HJ, Lee JH, Kim JS. Ocular vestibular evoked myogenic potentials to head tap and cervical vestibular evoked myogenic potentials to air-conducted sounds in isolated internuclear ophthalmoplegia. Clin Neurophysiol 2014; 125:1042-7. [DOI: 10.1016/j.clinph.2013.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/30/2022]
|
15
|
Chang CM, Young YH, Cheng PW. Feasibility of simultaneous recording of cervical and ocular vestibular-evoked myogenic potentials via galvanic vestibular stimulation. Acta Otolaryngol 2013; 133:1278-84. [PMID: 24245696 DOI: 10.3109/00016489.2013.820345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Simultaneous galvanic vestibular stimulation (GVS)-cervical vestibular-evoked myogenic potential (cVEMP) and GVS-ocular (oVEMP) tests yielded similar information to that obtained in individual tests. OBJECTIVE This study compared the characteristic parameters of cVEMPs and oVEMPs via GVS between individual and simultaneous recording patterns in healthy and elderly subjects. Consequently, the effectiveness of simultaneous GVS-cVEMP and GVS-oVEMP tests was assessed. METHODS A total of 24 healthy and 16 elderly subjects were enrolled in this study. All participants underwent individual cVEMP, individual oVEMP, and simultaneous cVEMP and oVEMP testing via GVS mode in a random order. The response rates and characteristic parameters of cVEMPs and oVEMPs between individual and simultaneous tests, including latencies, intervals, and amplitudes, were measured. RESULTS The VEMP parameters, including latencies, intervals, and amplitudes, all demonstrated no significant differences between individual and simultaneous tests (p > 0.05, paired t test), either in healthy or elderly subjects. Pearson's correlation analyses also revealed significant positive correlations in all parameters between these two tests (p < 0.05).
Collapse
|