1
|
Hosseini M, Sadeghnia HR, Salehabadi S, Soukhtanloo M. Contribution of estradiol in sex-dependent differences of pentylenetetrazole-induced seizures in rats. ACTA ACUST UNITED AC 2013; 100:237-45. [PMID: 23524184 DOI: 10.1556/aphysiol.100.2013.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study the contribution of estradiol in sex-dependent differences of pentylenetetrazole (PTZ)-induced seizures was investigated in rats. The rats were divided into four groups: 1) sham, 2) ovariectomized (OVX), 3) ovariectomized-estradiol (OVX-Est) and 4) male. The OVX-Est group received estradiol valerate (2 mg/kg; i.m/4 weeks) while, male, sham and OVX groups received vehicle. The animals were injected by PTZ (90 mg/kg). The latencies to minimal clonic seizures (MCS) and generalized tonic-clonic seizures (GTCS), were recorded. Serum 17β-estradiol and testosterone levels were also determined using an Elisa kit. GTCS latency in OVX rats was higher than in sham-operated animals (P < 0.05). MCS and GTCS latency in the male group was significantly higher than in the sham, OVX and OVX-Est groups (P < 0.001 and P < 0.01). There was no significant difference in MCS or GTCS latencies among OVX-Est, sham and OVX groups. Serum 17β-estradiol level in the OVX group was significantly lower than in the sham (P < 0.01) and in the OVX-Est group it was higher than in the sham, OVX and male groups (P < 0.01 and P < 0.001). Serum testosterone level in the male group was significantly higher than in all the other three groups (P < 0.001). It seems that testosterone probably has a more efficient role than estradiol in the gender dependent difference in seizure caused by PTZ in rats.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Mashhad University of Medical Sciences Neuroscience Research Center & Department of Physiology, School of Medicine Mashhad Iran Mashhad University Medical Sciences Department of Physiology, Scool of Medicine Mashhad Iran
| | | | | | | |
Collapse
|
2
|
Mishra M, Singh R, Mukherjee S, Sharma D. Dehydroepiandrosterone's antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters. Epilepsy Res 2013; 106:83-91. [PMID: 23891458 DOI: 10.1016/j.eplepsyres.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Dehydroepiandrosterone (DHEA), a neuroactive androgen steroid, has antiepileptic action in iron-induced experimental epilepsy (which models post-traumatic clinical epilepsy). In iron-induced epilepsy increased extracellular glutamate resulting from its reduced glial uptake due to the down-regulation (decreased expression) of transporters (glial and or neuronal) is active during epileptogenesis. The present study was aimed at determining whether the mechanism of antiepileptic action of DHEA involved upregulation (increased expression) of glutamate transporters. Iron-induced epileptogenesis was performed in rats by FeCl3 injection into the cerebral cortex. DHEA was administered intraperitoneally to the iron-induced epileptic rats for 7, 14 and 21 days. Levels of glutamate transporters mRNAs expression were measured using quantitative PCR in the hippocampus during the chronic phase of iron-induced epileptogenesis. There were significant reductions in the glutamate transporter mRNAs in epileptogenesis. DHEA treatment resulted in a significant elevation of glutamate transporters: GLT-1, GLAST and EACC-1 mRNA indicating that the DHEA treatment induced upregulation of these transporters. The results are of significance in respect of the mechanism of the antiepileptic action of neurosteroids and the glutamate transporters as therapeutic targets in glutamatergic epileptogenesis.
Collapse
Affiliation(s)
- Monika Mishra
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
3
|
Verrotti A, Loiacono G, Laus M, Coppola G, Chiarelli F, Tiboni GM. Hormonal and reproductive disturbances in epileptic male patients: Emerging issues. Reprod Toxicol 2011; 31:519-27. [DOI: 10.1016/j.reprotox.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 01/12/2011] [Accepted: 02/14/2011] [Indexed: 01/23/2023]
|
4
|
Mishra M, Singh R, Sharma D. Antiepileptic action of exogenous dehydroepiandrosterone in iron-induced epilepsy in rat brain. Epilepsy Behav 2010; 19:264-71. [PMID: 20801087 DOI: 10.1016/j.yebeh.2010.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
In the study described here, the antiepileptic effect of dehydroepiandrosterone (DHEA) treatment on iron-induced focal epileptiform activity in the rat brain was investigated. DHEA is a neuroactive corticosteroid hormone synthesized both in the adrenal cortex and in the brain. Its antioxidant properties are well known. As oxidative stress seems to play a major role in epileptogenesis in the iron-induced model of posttraumatic epilepsy, it was of interest to examine whether DHEA would exert antiepileptic activity. DHEA at a dose of 30 mg/kg/day administered intraperitoneally for 7, 14, and 21 days to iron-induced epileptic rats prevented epileptiform electrophysiological activity. Morris water maze and open-field tests on iron-induced epileptic rats revealed that DHEA also prevented behavioral alterations related to epileptiform activity. Thus, DHEA attenuated the cognitive defects produced by epileptic activity. Moreover, alterations in epileptogenesis-related biochemical parameters-lipid peroxidation, protein oxidation and Na(+), K(+)-ATPase (sodium pump) activity--were also countered by DHEA.
Collapse
Affiliation(s)
- Monika Mishra
- Laboratory of Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
5
|
Frye CA, Ryan A, Rhodes M. Antiseizure effects of 3alpha-androstanediol and/or 17beta-estradiol may involve actions at estrogen receptor beta. Epilepsy Behav 2009; 16:418-22. [PMID: 19854112 DOI: 10.1016/j.yebeh.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
Testosterone (T), the principal androgen secreted by the testes, can have antiseizure effects. Some of these effects may be mediated by T's metabolites. T is metabolized to 3alpha-androstanediol (3alpha-diol). T, but not 3alpha-diol, binds androgen receptor. We investigated effects of 3alpha-diol (1 mg/kg, SC) and/or an androgen receptor blocker (flutamide 10 mg, SC), 1 hour prior to administration of pentylenetetrazol (85 mg/kg, IP). Juvenile male rats administered 3alpha-diol had less seizure activity than those administered vehicle. Flutamide had no effects. T is aromatized to 17beta-estradiol (E(2)), which, like 3alpha-diol, acts at estrogen receptors (ERs). Selective estrogen receptor modulators that favor ERalpha (propyl pyrazole triol, 17alpha-E(2)) or ERbeta (diarylpropionitrile, coumestrol, 3alpha-diol), or both (17beta-E(2)), were administered (0.1 mg/kg, SC) to juvenile male rats 1 hour before pentylenetetrazol. Estrogens with activity at ERbeta, but not those selective for ERalpha, produced antiseizure effects. Actions at ERbeta may underlie some antiseizure effects of T's metabolites.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
6
|
Verrotti A, Latini G, Manco R, De Simone M, Chiarelli F. Influence of sex hormones on brain excitability and epilepsy. J Endocrinol Invest 2007; 30:797-803. [PMID: 17993775 DOI: 10.1007/bf03350821] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epilepsy is one of the most common neurologic problems worldwide. In spite of the many studies carried out, our understanding of generalized epileptogenesis remains far from complete. In recent years many data have clarified the effects of sexual hormones on brain excitability. Female and male sexual hormones may be considered pharmacoactive compounds that alter the seizure threshold, changing the frequency and semeiology of the seizures. In particular, estrogens may increase neuronal excitability while progesterone enhances inhibitions and increases the seizure threshold; on the other hand, androgens can decrease ictal activity in the human brain. This review provides an overview of the current knowledge in this field and highlights some of the prevailing hypotheses about the effects of sexual hormones on neuronal excitability analysing data from both animal and clinical studies.
Collapse
Affiliation(s)
- A Verrotti
- Department of Pediatrics, University of Chieti, Chieti, Italy.
| | | | | | | | | |
Collapse
|
7
|
Rhodes ME, Frye CA. Androgens in the hippocampus can alter, and be altered by, ictal activity. Pharmacol Biochem Behav 2005; 78:483-93. [PMID: 15251257 DOI: 10.1016/j.pbb.2004.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/09/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Steroid hormones, such as androgens, can modulate seizure processes. This review summarizes prior research and presents new data that support the role of androgens in modulating seizure processes. Testosterone, the primary endogenous androgen, has antiseizure effects in people and in animal models of epilepsy. Furthermore, testosterone's antiseizure effects may involve actions of its 5alpha-reduced metabolite and neuroactive steroid, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol). The hippocampus is a target for androgen action and is involved in many types of seizure disorder. Data suggest that actions of androgens in the hippocampus may be important for androgens' antiseizure effects. Interestingly, there may also be a reciprocal relationship between androgens and seizures. Ictal activity can alter the gonadal responsiveness of people with epilepsy and in animal models of seizure disorder. Thus, this paper will review data in support of androgens' antiseizure effects. Further understanding of androgens' role in seizure processes is important for potential therapeutic effects.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, The University at Albany-SUNY, Social Science 220, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
8
|
Rhodes ME, Harney JP, Frye CA. Gonadal, adrenal, and neuroactive steroids' role in ictal activity. Brain Res 2004; 1000:8-18. [PMID: 15053947 DOI: 10.1016/j.brainres.2003.12.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Of the many people that have epilepsy, only about 70% achieve seizure control with traditional pharmacotherapies. Steroids have long been known to influence ictal activity and may have a therapeutic role. This review summarizes recent investigations that have enhanced knowledge of the effects and mechanisms of gonadal, adrenal, and neuroactive steroids on seizure processes. Progesterone, which varies across reproductive cycles, pregnancy, and as a function of aging, has been shown to have anti-seizure effects among women with epilepsy and in animal models of epilepsy. Further, data suggest that progesterone's anti-seizure effects may involve its metabolism to the neuroactive steroid, 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), and its subsequent actions at GABA(A) receptors. Androgens also have anti-seizure effects. Androgens' anti-seizure effects may be mediated, in part, through actions of the testosterone metabolite, and neuroactive steroid, 5 alpha-androstane-3 alpha,17 alpha-diol (3 alpha-diol) at GABA(A) receptors. Stress can alter seizure susceptibility, suggesting a role of adrenal steroids on seizure processes. In animal models of epilepsy, acute or chronic stress can increase ictal activity. Notably, stress and seizures can alter levels of gonadal, adrenal, and neuroactive steroids, which may then influence subsequent seizure activity. Thus, this review summarizes recent progress in the role of gonadal, adrenal, and/or neuroactive steroids in seizure processes which suggest that greater understanding of these steroids' effects and mechanisms may ultimately lead to improved seizure control for people with epilepsy.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
9
|
Abstract
Specific epilepsy syndromes begin during adolescence and create a significant neurologic burden. Knowledge of these syndromes has important treatment and prognostic implications, which usually extend into adulthood. Little is known about the effect of menarche on seizures, even though a relationship of seizures to the menstrual cycle has been observed for many years. In general, puberty is not thought to influence seizure frequency. However, estrogen is thought to activate epileptiform activity; testosterone may decrease seizure activity; and progesterone decreases epileptiform discharges. These effects are mediated by effecting gammaaminobutyric acid (GABA) transmission. Idiopathic generalized epilepsies are the most frequent group with adolescent onset. These are probably polygenic in origin and represent a biologic continuum. Juvenile myoclonic epilepsy (JME) is the most common form. This contrasts with a variety of progressive myoclonic epilepsies that also are first seen in adolescence and have a genetic origin and specific treatments. Finally, although temporal lobe epilepsy associated with hippocampal sclerosis may have its origin in childhood, often the child does not come to surgical evaluation until adolescence or young adulthood. The characteristic clinical history, seizure semiology, and magnetic resonance imaging findings have allowed a discrete epilepsy syndrome to be established. Applying these same criteria to children and adolescents reveals that hippocampal sclerosis is the most common lesion responsible for their intractable temporal lobe epilepsy. Hippocampal sclerosis is probably underdiagnosed in children. The safety and efficacy of epilepsy surgery in the age group is excellent. Knowledge of the epilepsy syndromes that remit before adolescence, may persist into adolescence, or begin in adolescence is central to the treatment of this age group.
Collapse
Affiliation(s)
- James W Wheless
- Texas Comprehensive Epilepsy Program, University of Texas-Houston, 77030, USA.
| | | |
Collapse
|
10
|
Tan M, Tan U. Sex difference in susceptibility to epileptic seizures in rats: importance of estrous cycle. Int J Neurosci 2002; 108:175-91. [PMID: 11699190 DOI: 10.3109/00207450108986513] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sex difference in seizure susceptibility is one of the unresolved issues of epilepsy. It is known that estrogen is excitatory and progesterone is inhibitory to the central nervous system. Therefore, it is to be expected that seizure susceptibility may be associated with the estrous cycle, which should be tested in epilepsy research. Otherwise, different results in epilepsy studies could be an artifact of the estrous cycle. Reports in the literature are inconsistent about testosterone effects on seizures. In light of these considerations, sex differences in seizure susceptibility were restudied in rats. There was no significant sex difference in mean latencies to picrotoxin-induced seizures; prestrous-females had the shortest latencies to epileptic seizures compared to males and estrousfemales. With testosterone-injected rats, there was either no sex difference in latencies (to akinetic and focal seizures) or females had significantly shorter latencies than males (to status epilepticus, generalized tonic-clonic seizures, and myoclonic seizures). Testosterone-treated male rats had a significantly longer mean latency than controls for status epilepticus only; otherwise, these males showed no significant differences between mean latencies before and after testosterone (to focal, myoclonic, or generalized tonic-clonic seizures). In females, mean latencies to myoclonic seizures and status epilepticus were significantly shorter after testosterone than before. It was concluded that there is a sex difference in susceptibility to epileptic seizures in rats, provided that the estrous cycle is taken into account. Testosterone may increase and decrease seizure susceptibility in females and males, respectively. These effects may be important for understanding the mechanisms of epileptic phenomena and may provide some important clues to epilepsy treatment.
Collapse
Affiliation(s)
- M Tan
- Department of Neurology, BlackSea Technical University, Medical Faculty, Trabzon, Turkey
| | | |
Collapse
|