1
|
Tuena C, Riva G, Murru I, Campana L, Goulene KM, Pedroli E, Stramba-Badiale M. Contribution of cognitive and bodily navigation cues to egocentric and allocentric spatial memory in hallucinations due to Parkinson's disease: A case report. Front Behav Neurosci 2022; 16:992498. [PMID: 36311858 PMCID: PMC9606325 DOI: 10.3389/fnbeh.2022.992498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) manifestations can include visual hallucinations and illusions. Recent findings suggest that the coherent integration of bodily information within an egocentric representation could play a crucial role in these phenomena. Egocentric processing is a key aspect of spatial navigation and is supported by the striatum. Due to the deterioration of the striatal and motor systems, PD mainly impairs the egocentric rather than the allocentric spatial frame of reference. However, it is still unclear the interplay between spatial cognition and PD hallucinations and how different navigation mechanisms can influence such spatial frames of reference. We report the case of A.A., a patient that suffers from PD with frequent episodes of visual hallucinations and illusions. We used a virtual reality (VR) navigation task to assess egocentric and allocentric spatial memory under five navigation conditions (passive, immersive, map, path decision, and attentive cues) in A.A. and a PD control group without psychosis. In general, A.A. exhibited a statistically significant classical dissociation between the egocentric and allocentric performance with a greater deficit for the former. In particular, the dissociation was statistically significant in the "passive" and "attentive cues" conditions. Interestingly in the "immersive" condition, the dissociation was not significant and, in contrast to the other conditions, trends showed better performance for egocentric than allocentric memory. Within the theories of embodiment, we suggest that body-based information, as assessed with VR navigation tasks, could play an important role in PD hallucinations. In addition, the possible neural underpinnings and the usefulness of VR are discussed.
Collapse
Affiliation(s)
- Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Immacolata Murru
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Campana
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Karine M. Goulene
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Pedroli
- Faculty of Psychology, Università eCampus, Novedrate, Italy
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Cognitive and visual processing performance in Parkinson's disease patients with vs without visual hallucinations: A meta-analysis. Cortex 2022; 146:161-172. [PMID: 34864505 DOI: 10.1016/j.cortex.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Cognitive and visual impairments in Parkinson's Disease Psychosis (PDP) raise the question of whether a specific profile of impaired cognition and visual function is linked to vulnerability to visual hallucinations (VHs). Previous studies have limited sample sizes and only included a sub-sample of tests. This is the first meta-analysis quantifying visuo-cognitive impairments in PDP patients across a spectrum of tests and taking into account potential confounding factors such as levodopa medication, illness duration and general cognitive ability. OBJECTIVE Compare visual processing and cognitive performance between PD patients with and without VHs (PDVH and PDnoVH). METHODS Four databases (PubMed, PsychINFO, Scopus, WebOfScience) were searched for studies on visual and/or cognitive performance of PDnoVH and PDVH published up to 02/2020. For each task, means and SDs were extracted and standardized-mean-differences (SMDs) between-groups calculated. Effect-sizes (Hedges' g) were calculated for all comparisons and synthesized in random-effects meta-analyses with robust-variance-estimation (accounting for multiple correlated measures within each study per cognitive/visual domain). Publication bias was assessed with funnel plots and Egger intercept. RESULTS N = 99 studies including 2508 PDVH patients (mean age 68.4 years) and 5318 PDnoVH (mean age 66.4 years) were included in the seven meta-analyses. PDVH patients performed worse than PDnoVH across all measures of cognition and visual processing, with the greatest between-group effect-sizes in executive functions, attention, episodic memory and visual processing. Study characteristics were not significantly associated with between-group differences in the domains investigated. Age-differences were significantly associated with performance differences in general cognition, working memory and executive functions. CONCLUSION Models of PDVH need to incorporate a wider range of cognitive and processing domains than currently included. There is a need for studies disentangling the temporal relationship between cognitive/visual deficits and VHs as early identification of risk before the onset of VHs could mitigate later outcomes such as progression to dementia.
Collapse
|
3
|
Pezzoli S, Sánchez-Valle R, Solanes A, Kempton MJ, Bandmann O, Shin JI, Cagnin A, Goldman JG, Merkitch D, Firbank MJ, Taylor JP, Pagonabarraga J, Kulisevsky J, Blanc F, Verdolini N, Venneri A, Radua J. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson's disease and dementia with Lewy bodies: Voxel-based morphometry and neuropsychological meta-analysis. Neurosci Biobehav Rev 2021; 128:367-382. [PMID: 34171324 DOI: 10.1016/j.neubiorev.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
Visual hallucinations (VH) are common in Parkinson's disease and dementia with Lewy bodies, two forms of Lewy body disease (LBD), but the neural substrates and mechanisms involved are still unclear. We conducted meta-analyses of voxel-based morphometry (VBM) and neuropsychological studies investigating the neuroanatomical and cognitive correlates of VH in LBD. For VBM (12 studies), we used Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), including statistical parametric maps for 50% of the studies. For neuropsychology (35 studies), we used MetaNSUE to consider non-statistically significant unreported effects. VH were associated with smaller grey matter volume in occipital, frontal, occipitotemporal, and parietal areas (peak Hedges' g -0.34 to -0.49). In patients with Parkinson's disease without dementia, VH were associated with lower verbal immediate memory performance (Hedges' g -0.52). Both results survived correction for multiple comparisons. Abnormalities in these brain regions might reflect dysfunctions in brain networks sustaining visuoperceptive, attention, and executive abilities, with the latter also being at the basis of poor immediate memory performance.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Oliver Bandmann
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jennifer G Goldman
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Departments of Physical Medicine and Neurology, Chicago, IL, USA
| | - Doug Merkitch
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Frederic Blanc
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France; Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Norma Verdolini
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, London, UK
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Pezzoli S, Cagnin A, Bussè C, Zorzi G, Fragiacomo F, Bandmann O, Venneri A. Cognitive correlates and baseline predictors of future development of visual hallucinations in dementia with Lewy bodies. Cortex 2021; 142:74-83. [PMID: 34217015 DOI: 10.1016/j.cortex.2021.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Visual hallucinations (VH) are common in dementia with Lewy bodies (DLB), and are among the core symptoms for its clinical diagnosis. VH have been associated with cognitive alterations, although research findings in this area are still limited. The present study aimed at investigating the cognitive correlates of VH in DLB, and the baseline neuropsychological features predicting the future development of VH. A cross sectional study compared the cognitive profile of 18 DLB patients with VH with that of 32 DLB without VH. A longitudinal study involved 34 DLB patients with no VH at baseline, among whom 17 developed VH and 17 remained without VH at follow-up. Logistic regression analyses were carried out to investigate what baseline cognitive variables independently predicted the development of VH at follow-up. DLB patients with VH had worse performance on the copy of the Rey complex figure, assessing visual construction/perception, than those without VH in the cross-sectional study (p = .001). Significant impairments in attention and visual memory delayed recall were also present. Baseline performance on the immediate prose memory was the only significant predictor of VH development in the longitudinal study (p = .03). DLB patients are more at risk of developing VH if presenting more severe immediate verbal memory impairment, and this might be related to a combination of (a) DMN-related dysfunctions, (b) impairment in medial temporal lobe-related functions, and (c) frontal abilities including long-term encoding of information and working memory. Differences between hallucinating and non-hallucinating patients in visual construction/perception, typical of DLB symptomatology, may be essential for VH to emerge in individuals with an at risk cognitive profile.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK
| | | | - Cinzia Bussè
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giovanni Zorzi
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | - Oliver Bandmann
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, UK.
| |
Collapse
|
5
|
Ffytche DH, Creese B, Politis M, Chaudhuri KR, Weintraub D, Ballard C, Aarsland D. The psychosis spectrum in Parkinson disease. Nat Rev Neurol 2017; 13:81-95. [PMID: 28106066 PMCID: PMC5656278 DOI: 10.1038/nrneurol.2016.200] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In 2007, the clinical and research profile of illusions, hallucinations, delusions and related symptoms in Parkinson disease (PD) was raised with the publication of a consensus definition of PD psychosis. Symptoms that were previously deemed benign and clinically insignificant were incorporated into a continuum of severity, leading to the rapid expansion of literature focusing on clinical aspects, mechanisms and treatment. Here, we review this literature and the evolving view of PD psychosis. Key topics include the prospective risk of dementia in individuals with PD psychosis, and the causal and modifying effects of PD medication. We discuss recent developments, including recognition of an increase in the prevalence of psychosis with disease duration, addition of new visual symptoms to the psychosis continuum, and identification of frontal executive, visual perceptual and memory dysfunction at different disease stages. In addition, we highlight novel risk factors - for example, autonomic dysfunction - that have emerged from prospective studies, structural MRI evidence of frontal, parietal, occipital and hippocampal involvement, and approval of pimavanserin for the treatment of PD psychosis. The accumulating evidence raises novel questions and directions for future research to explore the clinical management and biomarker potential of PD psychosis.
Collapse
Affiliation(s)
- Dominic H Ffytche
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology &Neuroscience, King's College London, UK. De Crespigny Park, London SE5 8AF, UK
| | - Byron Creese
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- University of Exeter Medical School, University of Exeter, EX1 2LU, UK
| | - Marios Politis
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - K Ray Chaudhuri
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, National Parkinson Foundation Centre of Excellence, King's College London/Kings College Hospital, 5 Cutcombe Road, London SE5 9RT, UK
| | - Daniel Weintraub
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania 3615 Chestnut Street, #330, Philadelphia, Pennsylvania 19104, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centres (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Centre 3900 Woodland Avenue, Philadelphia, Pennsylvania 19104, USA
| | - Clive Ballard
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- University of Exeter Medical School, University of Exeter, EX1 2LU, UK
| | - Dag Aarsland
- KCL-PARCOG group, Institute of Psychiatry, Psychology &Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology &Neuroscience, King's College London, UK. De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
6
|
ffytche DH, Aarsland D. Psychosis in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:585-622. [DOI: 10.1016/bs.irn.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Yao N, Cheung C, Pang S, Shek-kwan Chang R, Lau KK, Suckling J, Yu K, Ka-Fung Mak H, Chua SE, Ho SL, McAlonan GM. Multimodal MRI of the hippocampus in Parkinson's disease with visual hallucinations. Brain Struct Funct 2016; 221:287-300. [PMID: 25287513 PMCID: PMC4720723 DOI: 10.1007/s00429-014-0907-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022]
Abstract
Visual hallucinations carry poor prognosis in Parkinson's disease. Here we tested the hypothesis that the hippocampus and visuospatial memory impairment play a central role in the pathology of PD with visual hallucinations. Multimodal magnetic resonance imaging of the brain was carried out in 12 people with PD and visual hallucinations; 15 PD individuals without hallucinations; and 14 healthy controls. Age, gender, cognitive ability, and education level were matched across the three groups. PD patients were taking dopaminergic medication. Hippocampal volume, shape, mean diffusivity (MD), and functional connectivity within the whole brain were examined. Visuospatial memory was compared between groups, and correlations with hippocampal MD, functional connectivity, and the severity of hallucinations were explored. There were no macrostructural differences across groups, but individuals with hallucinations had higher diffusivity in posterior hippocampus than the other two groups. Visuospatial memory was poorer in both PD groups compared to controls, and was correlated with hallucinations. Finally, hippocampal functional connectivity in the visual cortices was lower in those with hallucinations than other groups, and this correlated with visuospatial memory impairment. In contrast, functional connectivity between the hippocampus and default mode network regions and frontal regions was greater in the PD hallucinators compared to other groups. We suggest that hippocampal pathology, which disrupts visuospatial memory, makes a key contribution to visual hallucinations in PD. These findings may pave the way for future studies of imaging biomarkers to measure treatment response in those with PD who are most at risk of poor outcomes.
Collapse
Affiliation(s)
- Nailin Yao
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Charlton Cheung
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory for Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shirley Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Richard Shek-kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kui Kai Lau
- Division of Neurology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - John Suckling
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, United Kingdom and Cambridge and Peterborough Foundation NHS Trust, University of Cambridge, Cambridge, UK
| | - Kevin Yu
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Siew Eng Chua
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory for Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Grainne M McAlonan
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory for Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King's College London, London, SE5 8AZ, UK.
| |
Collapse
|
8
|
Chung EJ, Seok K, Kim SJ. A comparison of montreal cognitive assessment between patients with visual hallucinations and without visual hallucinations in Parkinson's disease. Clin Neurol Neurosurg 2015; 130:98-100. [PMID: 25596487 DOI: 10.1016/j.clineuro.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 12/25/2014] [Accepted: 12/28/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Visual hallucination (VH) is closely associated with cognitive impairment in Parkinson's disease (PD). The aim of this study is to analyze the domain of cognitive impairment related to the VH by analyzing cognition in PD. METHOD Twenty-six of 58 patients had VH (PD-VH), whereas 32 patients had no hallucinations (PD-NH); patients assigned to the PD-VH on the basis of having at least one VH per week for one month before participation in the study. All of the patients were administered the Montreal Cognitive Assessment-Korean test (MoCA-K). We analyzed the differences in cognition between PD-VH and PD-NH. RESULTS The Hoehn-Yahr (HY) stage and the Beck Depression Inventory version I (BDI) scores in PD-VH were significantly different from those in PD-NH. After adjusting for the HY stage and BDI, the language domain of the MoCA-K cognitive domains presents a significant difference between PD-VH and PD-NH. CONCLUSION Sentence processing and naming as the composition of the language domain in the MoCA-K have been associated in common with posterior cortical dysfunction. Although our result shows that the language domain of MoCA-K is sensitive to cognitive deficit in PD-VH patients, it needs further neuroimaging analysis for certifying the relationship between language impairment and posterior cortical deficit as the pathophysiology of PD-VH.
Collapse
Affiliation(s)
- Eun Joo Chung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kyngha Seok
- Institute of Statistical Information, Department of Data Science, Inje University, Kimhae, Republic of Korea
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|