1
|
Li H, Yuan L, Yang H, Guo Y, Zheng W, Fan K, Deng S, Gong L, Xu H, Yang Z, Cheng J, Kang M, Deng H. Analysis of SOD1 Variants in Chinese Patients with Familial Amyotrophic Lateral Sclerosis. QJM 2023; 116:365-374. [PMID: 36661322 DOI: 10.1093/qjmed/hcad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, and genetic contributors exert a significant role in the complicated pathogenesis. Identification of the genetic causes in ALS families could be valuable for early diagnosis and management. The development of potential drugs for patients with genetic defects will shed new light on ALS therapy. AIM To identify causative variants in three Chinese families with familial ALS (FALS), reveal the pathogenic mechanism, and look for the targeted drug for ALS. DESIGN AND METHODS Whole-exome sequencing and bioinformatics were used to perform genetic analysis of the ALS families. Functional analysis was performed to study the variants' function and search for potential drug targets. RESULTS Three heterozygous missense variants of the SOD1 gene were identified in families with FALS. The clinical manifestations of these patients include spinal onset, predominant lower motor neurons presentation, and absence of cognitive involvement. Functional analysis showed that all three SOD1 variants led to increased reactive oxygen species (ROS) levels, reduced cell viability, and formation of cytoplasmic aggregates. Remarkably, the decreased cell viability induced by variants was rescued after treatment with the ROS inhibitor N-acetylcysteine. CONCLUSIONS This study identified three SOD1 variants in three families with FALS. The variant SOD1 toxicity was associated with oxidative damage and aggregation, and N-acetylcysteine could rescue the decreased cell viability induced by these variants. Our findings support a pathogenic role for ROS in SOD1 deficiencies, and provide a potential drug N-acetylcysteine for ALS therapy, especially in SOD1-patients with limb onset.
Collapse
Affiliation(s)
- H Li
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - L Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - H Yang
- Department of Neurology, the Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Y Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - W Zheng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - K Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - S Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - L Gong
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Z Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - J Cheng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - M Kang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
2
|
Vats A, Gourie-Devi M, Verma M, Ramachandran S, Taneja B, Kukreti R, Taneja V. Identification of L84F mutation with a novel nucleotide change c.255G > T in the superoxide dismutase gene in a North Indian family with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015; 17:253-9. [DOI: 10.3109/21678421.2015.1111906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi,
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, Delhi,
| | - Mandaville Gourie-Devi
- Department of Neurophysiology, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi,
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi,
| | - Meenakshi Verma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, and
| | | | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, India
| | - Ritushree Kukreti
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, and
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi,
| |
Collapse
|