1
|
Huang YF, Briggs CM, Gokhale S, Punga AR. Elevated C1s/C1-INH in serum and plasma of myasthenia gravis patients. J Neuroimmunol 2024; 396:578447. [PMID: 39255718 DOI: 10.1016/j.jneuroim.2024.578447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Myasthenia Gravis (MG) is an autoimmune neuromuscular disorder where acetylcholine receptor (AChR) antibodies induce membrane attack complex formation at the muscle membrane. The C1-inhibitor (C1-INH) regulates the classical pathway and is a promising marker in other autoimmune disorders. Treatment options for AChR antibody MG include complement inhibitors; nevertheless, the early pathway activation in MG remains unclear. Serum and plasma C1s-C1-INH levels were higher in MG patients than in matched healthy controls, supporting early classical pathway activation in most MG patients. These findings allow prospective validation studies of activated C1s as a putative treatment target and potential accompanying biomarker in MG.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | | | - Anna Rostedt Punga
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Koneczny I, Mané-Damas M, Zong S, De Haas S, Huda S, van Kruining D, Damoiseaux J, De Rosa A, Maestri M, Guida M, Molenaar P, Van Damme P, Fichtenbaum A, Perkmann T, De Baets M, Lazaridis K, Zouvelou V, Tzartos S, Ricciardi R, Losen M, Martinez-Martinez P. A retrospective multicenter study on clinical and serological parameters in patients with MuSK myasthenia gravis with and without general immunosuppression. Front Immunol 2024; 15:1325171. [PMID: 38715598 PMCID: PMC11074957 DOI: 10.3389/fimmu.2024.1325171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Introduction Muscle-specific kinase (MuSK)- myasthenia gravis (MG) is caused by pathogenic autoantibodies against MuSK that correlate with disease severity and are predominantly of the IgG4 subclass. The first-line treatment for MuSK-MG is general immunosuppression with corticosteroids, but the effect of treatment on IgG4 and MuSK IgG4 levels has not been studied. Methods We analyzed the clinical data and sera from 52 MuSK-MG patients (45 female, 7 male, median age 49 (range 17-79) years) from Italy, the Netherlands, Greece and Belgium, and 43 AChR-MG patients (22 female, 21 male, median age 63 (range 2-82) years) from Italy, receiving different types of immunosuppression, and sera from 46 age- and sex-matched non-disease controls (with no diagnosed diseases, 38 female, 8 male, median age 51.5 (range 20-68) years) from the Netherlands. We analyzed the disease severity (assessed by MGFA or QMG score), and measured concentrations of MuSK IgG4, MuSK IgG, total IgG4 and total IgG in the sera by ELISA, RIA and nephelometry. Results We observed that MuSK-MG patients showed a robust clinical improvement and reduction of MuSK IgG after therapy, and that MuSK IgG4 concentrations, but not total IgG4 concentrations, correlated with clinical severity. MuSK IgG and MuSK IgG4 concentrations were reduced after immunosuppression in 4/5 individuals with before-after data, but data from non-linked patient samples showed no difference. Total serum IgG4 levels were within the normal range, with IgG4 levels above threshold (1.35g/L) in 1/52 MuSK-MG, 2/43 AChR-MG patients and 1/45 non-disease controls. MuSK-MG patients improved within the first four years after disease onset, but no further clinical improvement or reduction of MuSK IgG4 were observed four years later, and only 14/52 (26.92%) patients in total, of which 13 (93.3%) received general immunosuppression, reached clinical remission. Discussion We conclude that MuSK-MG patients improve clinically with general immunosuppression but may require further treatment to reach remission. Longitudinal testing of individual patients may be clinically more useful than single measurements of MuSK IgG4. No significant differences in the serum IgG4 concentrations and IgG4/IgG ratio between AChR- and MuSK-MG patients were found during follow-up. Further studies with larger patient and control cohorts are necessary to validate the findings.
Collapse
Affiliation(s)
- Inga Koneczny
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Shenghua Zong
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sander De Haas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Saif Huda
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daan van Kruining
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Peter Molenaar
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Philip Van Damme
- Neurology Department, University Hospital, Leuven, Belgium
- Department of Neurosciences, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Andreas Fichtenbaum
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marc De Baets
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Vasiliki Zouvelou
- 1stNeurology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Socrates Tzartos
- Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- Cardio Thoracic and Vascular Surgery Department, University of Pisa, Pisa, Italy
| | - Mario Losen
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Vergoossen DLE, Ruiter AM, Keene KR, Niks EH, Tannemaat MR, Strijbos E, Lipka AF, van der Zijde ECJ, van Tol MJD, Bakker JA, Wevers BA, Westerberg E, Borges LS, Tong OC, Richman DP, Illa I, Punga AR, Evoli A, van der Maarel SM, Verschuuren JJ, Huijbers MG. Enrichment of serum IgG4 in MuSK myasthenia gravis patients. J Neuroimmunol 2022; 373:577978. [PMID: 36240543 DOI: 10.1016/j.jneuroim.2022.577978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Annabel M Ruiter
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Kevin R Keene
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ellen Strijbos
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alexander F Lipka
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Els C Jol van der Zijde
- Willem-Alexander Children's Hospital, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maarten J D van Tol
- Willem-Alexander Children's Hospital, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jaap A Bakker
- Department of Clinical Chemistry, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Brigitte A Wevers
- Department of Clinical Chemistry, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Elisabet Westerberg
- Clinical Neurophysiology, Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, Ingång 85, 3rd floor, 751 85 Uppsala, Sweden
| | - Lúcia S Borges
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - Olivia C Tong
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - David P Richman
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - Isabel Illa
- Neuromuscular diseases Neurology department, Hospital Sant Pau UAB, Avenida Pare Claret N° 167, Barcelona 08025, Spain
| | - Anna Rostedt Punga
- Clinical Neurophysiology, Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, Ingång 85, 3rd floor, 751 85 Uppsala, Sweden
| | - Amelia Evoli
- Department of Neurology, Università Cattolica del Sacro Cuore, Largo A. Gemelli 1, 00168 Rome, Italy
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands; Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
5
|
Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines 2022; 10:biomedicines10061360. [PMID: 35740382 PMCID: PMC9220000 DOI: 10.3390/biomedicines10061360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The complement system plays a key role in myasthenia gravis (MG). Anti-complement drugs are emerging as effective therapies to treat anti-acetylcholine receptor (AChR) antibody-positive MG patients, though their usage is still limited by the high costs. Here, we searched for plasma complement proteins as indicators of complement activation status in AChR-MG patients, and potential biomarkers for tailoring anti-complement therapy in MG. Plasma was collected from AChR-MG and MuSK-MG patients, and healthy controls. Multiplex immunoassays and ELISA were used to quantify a panel of complement components (C1Q, C2, C3, C4, C5, Factor B, Factor H, MBL, and properdin) and activation products (C4b, C3b, C5a, and C5b-9), of classical, alternative and lectin pathways. C2 and C5 levels were significantly reduced, and C3, C3b, and C5a increased, in plasma of AChR-MG, but not MuSK-MG, patients compared to controls. This protein profile was indicative of complement activation. We obtained sensitivity and specificity performance results suggesting plasma C2, C3, C3b, and C5 as biomarkers for AChR-MG. Our findings reveal a plasma complement “C2, C3, C5, C3b, and C5a” profile associated with AChR-MG to be further investigated as a biomarker of complement activation status in AChR-MG patients, opening new perspectives for tailoring of anti-complement therapies to improve the disease treatment.
Collapse
|
6
|
Ozawa Y, Uzawa A, Yasuda M, Kojima Y, Oda F, Himuro K, Kawaguchi N, Kuwabara S. Changes in serum complements and their regulators in generalized myasthenia gravis. Eur J Neurol 2020; 28:314-322. [PMID: 32889770 DOI: 10.1111/ene.14500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate changes in serum complements and their regulators in the pathogenesis of myasthenia gravis (MG). METHODS Forty-four patients with acetylcholine receptor antibody-positive MG, as well as 20 patients with non-inflammatory neurological disorders were enrolled. Serum complements (C3, C4 and soluble C5b-9) and complement regulators (vitronectin, clusterin and properdin) were extensively analysed by enzyme-linked immunosorbent assay and their associations with clinical profiles of MG were examined. RESULTS Serum C3, C4 and clusterin levels were not significantly different between patients with MG and controls. The patients with MG had higher soluble C5b-9 (P = 0.09) and vitronectin (P = 0.001) levels than the controls; moreover, vitronectin levels decreased after treatment (P = 0.09). Serum properdin (P = 0.03) levels were lower in the patients with MG than in the controls, and negatively correlated with the MG Activities of Daily Living score (rs = -0.26, P = 0.09) and with the presence of bulbar palsy (P = 0.04). CONCLUSION Our results show that activation of complements and an altered complement network could contribute to the inflammatory pathogenesis of MG.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - F Oda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - K Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Matsudo Neurology Clinic, Matsudo, Japan
| | - N Kawaguchi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Neurology Clinic Chiba, Dowa Institute of Clinical Neuroscience, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Abstract
INTRODUCTION Acetylcholine receptor antibody-positive generalized myasthenia gravis (gMG) is effectively treated with symptomatic and immunosuppressive drugs but a proportion of patients has a persistent disease and severe adverse events (AEs). The unmet medical needs are specific immunosuppression and AE lowering. Eculizumab blocks C5 protecting neuromuscular junction from the destructive autoantibody effects. Phase II (Study C08-001) and III (ECU-MG-301) studies, with the open-label extension (ECU-MG-302), demonstrated eculizumab efficacy and safety in refractory gMG patients. AREAS COVERED We provide an overview of eculizumab biological features, clinical efficacy, and safety in gMG patients, highlighting our perspective on the drug positioning in the MG treatment algorithm. EXPERT OPINION Eculizumab has the potential to significantly change the immunosuppressive approach in gMG offering the opportunity to avoid or delay corticosteroids' use due to its speed and selective mechanism of action. Eculizumab prescription will depend on: 1. ability to modify the natural disease course; 2. sustainability in the clinical practice (cost/effectiveness ratio); 3. drug-induced AE reduction. At present we are missing a controlled study on its use as a first-line treatment. We think that immunosuppression in MG will change significantly in the next years by adopting more focused 'Precision Medicine' approaches, and Eculizumab seems to satisfy such a promise.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| | - Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| |
Collapse
|
8
|
Heterogeneity of auto-antibodies against nAChR in myasthenic serum and their pathogenic roles in experimental autoimmune myasthenia gravis. J Neuroimmunol 2018; 320:64-75. [PMID: 29759142 DOI: 10.1016/j.jneuroim.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022]
Abstract
Many myasthenia gravis (MG) patients have auto-antibodies against the nicotinic acetylcholine receptor (nAChR), and monoclonal antibodies against the main immunogenic region (MIR) of nAChR can induce experimental autoimmune MG (EAMG). We investigated whether Fab fragment of MIR antibody (Fab35) could block the pathogenicity of polyclonal antibodies. Fab35 partially inhibited nAChR downmodulation, blocked EAMG serum-induced binding of polyclonal antibodies and complement deposition in vitro. Moreover, Fab35 did not ameliorate the EAMG serum-induced EAMG phenotype in rats. These results suggested that the EAMG serum possessed several different pathogenic antibodies that might be sufficient to induce the EAMG phenotype.
Collapse
|
9
|
Li Y, Yang M, Zhang R, Liu W, Zhang K, Wen W, Yi L, Wang Q, Hao M, Yang H, Chang J, Li J. Evaluation of serum immunoglobulins concentrations and distributions in vitiligo patients. Immunol Res 2017; 64:1150-1156. [PMID: 27417998 DOI: 10.1007/s12026-016-8809-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitiligo is a dermatological disorder with an autoimmune mechanism characterized by production of a variety of autoantibodies. Different levels of immunoglobulins can indicate the presence and the stage of some autoimmune diseases. We aimed to investigate serum IgA, IgM and IgG subclass levels and melanocyte-reactive antibodies in 65 vitiligo patients by the immunonephelometric assay (35 healthy people as controls). Compared with normal controls, a significant increase in total IgG, IgG1 and IgG2 (p = .005, p = .003 and p = .043, respectively) was observed in progressive nonsegmental vitiligo patients. Also, we found a significant decrease in IgG3 (p = .000 and p = .023) in progressive nonsegmental vitiligo patients and segmental patients. Moreover, we found the serum levels of IgG4 subclass in stable nonsegmental patients were significantly higher than those in normal controls (p = .018). Compared with controls, the positive rates of melanocyte-reactive antibodies were higher in progressive nonsegmental patients and stable nonsegmental patients (p = .032 and p = .046, respectively). Furthermore, we found higher level of IgG4 and lower level of IgM in male than those in female. Higher IgG1 level was also observed in patients with a family history than in those without a family history. In addition, there was a significant inverse correlation between the concentrations of IgG4 and disease duration. Our evaluation about the level of immunoglobulins might provide a useful insight into the pathological process of vitiligo.
Collapse
Affiliation(s)
- Yulong Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Min Yang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Wan Liu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Wei Wen
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Lang Yi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qiaoxian Wang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Mingju Hao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hui Yang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China. .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
10
|
|
11
|
Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev 2013; 12:904-11. [DOI: 10.1016/j.autrev.2013.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
12
|
Hjelholt A, Carlsen T, Deleuran B, Jurik AG, Schiøttz-Christensen B, Christiansen G, Birkelund S. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis. PLoS One 2013; 8:e56210. [PMID: 23424650 PMCID: PMC3570413 DOI: 10.1371/journal.pone.0056210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Spondyloarthritis (SpA) comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA)-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP) seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI). Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27⁺ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction. These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased expression of human HSP60 in the synovium of patients with SpA.
Collapse
Affiliation(s)
- Astrid Hjelholt
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
13
|
The increased expression of CD21 on AchR specified B cells in patients with myasthenia gravis. J Neuroimmunol 2012; 256:49-54. [PMID: 23266128 DOI: 10.1016/j.jneuroim.2012.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 12/15/2022]
Abstract
CD21, a major complement receptor expressed on B cells, is associated with autoimmune disorders. In the present study, we investigated the role of CD21 in pathogenesis of myasthenia gravis (MG) in relationship to anti-acetylcholine receptor (AchR) IgG (anti-AchR IgG) secretion. We detected increased surface expression of CD21 on AchR specified B cells as well as decreased surface expression of CD21 on total B cells in peripheral blood of patients with generalized MG (gMG). In addition, the serum concentrations of soluble secreted CD21 (sCD21) were decreased in patients with gMG. We also found that the level of CD21(+) AchR specified B cells correlated positively with serum anti-AchR IgG level, while the serum concentration of soluble CD21 correlated negatively with serum anti-AchR IgG level. Our data suggests that CD21 might facilitate its function on AchR specified B cell activation, resulting in the secretion of anti-AchR IgG.
Collapse
|