1
|
Survival times of patients with glioblastoma in low- and middle-income countries: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3393-3403. [PMID: 36044130 DOI: 10.1007/s10143-022-01844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
Little is known about the survivorship of glioblastoma (GBM) patients in low- and middle-income countries (LMICs). We hypothesize that this would be lower than published figures for high-income countries due to cancer health disparities. We performed a systematic review and meta-analysis to estimate the median overall survival (OS) of GBM in LMICs and determine factors affecting OS. A systematic review of 12 electronic databases was conducted according to PRISMA guidelines to identify studies of newly diagnosed adult GBM patients done in countries classified as LMIC by the World Bank (WB) from inception to December 2020. Random effects meta-analysis of collected median overall survival data was done. Subgroup analysis and meta-regression were done to determine if WB income classification (WBIC), start year of recruitment (pre- or post-popularization of the standard Stupp protocol), and treatment modality affected OS. The 24 articles (n = 2,552) that met the inclusion criteria were from 8 low-middle income and upper-middle income countries, with 0 articles from low-income countries. Random effects analysis of 24 studies showed a pooled median OS of 14.17 months (95% CI 12.90-15.43, I2 = 79). Subgroup analysis showed a significant difference (p < 0.05) in the pooled median OS of studies predating Stupp protocol (12.54 mo, 95% CI 11.13-13.96, I2 = 80%; n = 1027) and studies postdating Stupp protocol (15.64 mo, 95% CI 13.58-17.69, I2 = 77; n = 1412). Subgroup analysis of WBIC and treatment modalities did not show significant differences. Published data on the survivorship of GBM patients in LMICs is sparse, highlighting the need for good quality pragmatic studies from LMICs. The limited evidence suggests improving survivorship after introduction of the Stupp protocol.
Collapse
|
3
|
McAleenan A, Kelly C, Spiga F, Kernohan A, Cheng HY, Dawson S, Schmidt L, Robinson T, Brandner S, Faulkner CL, Wragg C, Jefferies S, Howell A, Vale L, Higgins JPT, Kurian KM. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3:CD013316. [PMID: 33710615 PMCID: PMC8078495 DOI: 10.1002/14651858.cd013316.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O6-methylguanine-DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan-Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS Two review authors independently undertook all steps of the identification and data extraction process for multiple-method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'-cytosine-phosphate-guanine-3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta-analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies making such comparisons.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hung-Yuan Cheng
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Amy Howell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kathreena M Kurian
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Cheng G, Xin Q, Li K, Sun C, Lin Z, Luan Y, Wang J, Qi T, Chen Y, Xu D, Kong F. The Association between O(6)-Methylguanine DNA Methyltransferase (MGMT) rs11016879 and rs7069143 Polymorphisms and Susceptibility to Еsophageal Аdenocarcinoma in a Han Chinese Population. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Liu Y, Zhang X, Jia J, Tang L, Gao X, Yan L, Wang L, Yu F, Ma N, Liu W, Yang L, Liu X, Liu D. Correlation between polymorphisms in DNA mismatch repair genes and the risk of primary hepatocellular carcinoma for the Han population in northern China. Scand J Gastroenterol 2016; 50:1404-10. [PMID: 26027715 DOI: 10.3109/00365521.2015.1045429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study investigated correlations between polymorphisms in DNA mismatch repair (MMR) genes and the risk of primary hepatocellular carcinoma (PHC). METHODS Single nucleotide polymorphisms (SNPs) in the DNA MMR genes MLH3 (rs175080), PMS1 (rs5742933), PMS2 (rs1059060), MSH3 (rs26279), MSH5 (rs1150793, rs2075789) and MSH6 (rs1042821) were detected using the SNaPshot method in 250 PHC cases and in 308 patients without PHC in the Han population in northern China. RESULTS The AA genotype in MLH3 (rs175080) increased the risk of PHC (odds ratio [OR] = 3.424; 95% confidence interval [CI]: 1.097-10.689). The AG and GG genotypes in MSH3 (rs26279) increased the risk of PHC (OR: 1.644 and 3.300; 95% CI: 1.112-2.428 and 1.765-6.168, respectively). The AA genotype in MSH5 (rs2075789) increased the risk of PHC (OR: 9.229; 95% CI: 1.174-72.535). The CT genotype in MSH6 (rs1042821) reduced the risk of PHC (OR: 0.629; 95% CI: 0.428-0.924). CONCLUSIONS Our study suggests that polymorphisms in MLH3 (rs175080), MSH3 (rs26279), MSH5 (rs2075789) and MSH6 (rs1042821) may be independent risk factors for PHC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Epidemiology and Statistics, Hebei Medical University , Shi Jiazhuang , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nguyen SA, Stechishin ODM, Luchman HA, Lun XQ, Senger DL, Robbins SM, Cairncross JG, Weiss S. Novel MSH6 mutations in treatment-naïve glioblastoma and anaplastic oligodendroglioma contribute to temozolomide resistance independently of MGMT promoter methylation. Clin Cancer Res 2014; 20:4894-903. [PMID: 25078279 DOI: 10.1158/1078-0432.ccr-13-1856] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The current standard of care for glioblastoma (GBM) involves a combination of surgery, radiotherapy, and temozolomide chemotherapy, but this regimen fails to achieve long-term tumor control. Resistance to temozolomide is largely mediated by expression of the DNA repair enzyme MGMT; however, emerging evidence suggests that inactivation of MSH6 and other mismatch repair proteins plays an important role in temozolomide resistance. Here, we investigate endogenous MSH6 mutations in GBM, anaplastic oligodendroglial tumor tissue, and corresponding brain tumor-initiating cell lines (BTIC). EXPERIMENTAL DESIGN MSH6 sequence and MGMT promoter methylation were determined in human tumor samples and BTICs. Sensitivity to temozolomide was evaluated in vitro using BTICs in the absence and presence of O(6)-benzylguanine to deplete MGMT. The influence of MGMT and MSH6 status on in vivo sensitivity to temozolomide was evaluated using intracranial BTIC xenografts. RESULTS We identified 11 previously unreported mutations in MSH6 in nine different glioma samples and six paired BTIC lines from adult patients. In addition, MSH6 mutations were documented in three oligodendrogliomas and two treatment-naïve gliomas, both previously unreported findings. These mutations were found to influence the sensitivity of BTICs to temozolomide both in vitro and in vivo, independent of MGMT promoter methylation status. CONCLUSIONS These data demonstrate that endogenous MSH6 mutations may be present before alkylator therapy and occur in at least two histologic subtypes of adult glial neoplasms, with this report serving as the first to note these mutations in oligodendroglioma. These findings broaden our understanding of the clinical response to temozolomide in gliomas.
Collapse
Affiliation(s)
- Stephanie A Nguyen
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Owen D M Stechishin
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Q Lun
- Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donna L Senger
- Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J Gregory Cairncross
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals (Basel) 2013; 6:1475-506. [PMID: 24287492 PMCID: PMC3873674 DOI: 10.3390/ph6121475] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV brain tumor characterized by a heterogeneous population of cells that are highly infiltrative, angiogenic and resistant to chemotherapy. The current standard of care, comprised of surgical resection followed by radiation and the chemotherapeutic agent temozolomide, only provides patients with a 12–14 month survival period post-diagnosis. Long-term survival for GBM patients remains uncommon as cells with intrinsic or acquired resistance to treatment repopulate the tumor. In this review we will describe the mechanisms of resistance, and how they may be overcome to improve the survival of GBM patients by implementing novel chemotherapy drugs, new drug combinations and new approaches relating to DNA damage, angiogenesis and autophagy.
Collapse
|