1
|
Chen W, Liu H, Liu S, Kang Y, Nie Z, Lei H. Altered prefrontal neurochemistry in the DJ-1 knockout mouse model of Parkinson's disease: complementary semi-quantitative analyses with in vivo magnetic resonance spectroscopy and MALDI-MSI. Anal Bioanal Chem 2022; 414:7977-7987. [PMID: 36208327 DOI: 10.1007/s00216-022-04341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In vivo proton magnetic resonance spectroscopy (1H-MRS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) are two semi-quantitative analytical methods commonly used in neurochemical research. In this study, the two methods were used complementarily, in parallel, to investigate neurochemical perturbations in the medial prefrontal cortex (mPFC) of 9-month-old DJ-1 knockout mice, a well-established transgenic model for Parkinson's diseases. Convergingly, the results obtained with the two methods demonstrated that, compared with the wild-type (WT) mice, the DJ-1 knockout mice had significantly increased glutathione (GSH) level and GSH/glutamate (Glu) ratio in the mPFC, which likely presented an astrocytic compensatory mechanism in response to elevated regional oxidative stress induced by the loss of DJ-1 function. The results from this study also highlighted (1) the need to be cautious when interpreting the in vivo 1H-MRS results obtained from aged transgenic animals, in which the concentration of internal reference, being whether water or total creatine, could no longer be assumed to be the same as that in the age-matched WT animals, and (2) the necessity and importance of complementary analyses with more than one method under such circumstances.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China
| | - Sijie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China.
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
2
|
Heo H, Ahn JB, Lee HH, Kwon E, Yun JW, Kim H, Kang BC. Neurometabolic profiles of the substantia nigra and striatum of MPTP-intoxicated common marmosets: An in vivo proton MRS study at 9.4 T. NMR IN BIOMEDICINE 2017; 30:e3686. [PMID: 28028868 DOI: 10.1002/nbm.3686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Given the strong coupling between the substantia nigra (SN) and striatum (STR) in the early stage of Parkinson's disease (PD), yet only a few studies reported to date that have simultaneously investigated the neurochemistry of these two brain regions in vivo, we performed longitudinal metabolic profiling in the SN and STR of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated common marmoset monkey models of PD (n = 10) by using proton MRS (1 H-MRS) at 9.4 T. T2 relaxometry was also performed in the SN by using MRI. Data were classified into control, MPTP_2weeks, and MPTP_6-10 weeks groups according to the treatment duration. In the SN, T2 of the MPTP_6-10 weeks group was lower than that of the control group (44.33 ± 1.75 versus 47.21 ± 2.47 ms, p < 0.05). The N-acetylaspartate to total creatine ratio (NAA/tCr) and γ-aminobutyric acid to tCr ratio (GABA/tCr) of the MPTP_6-10 weeks group were lower than those of the control group (0.41 ± 0.04 versus 0.54 ± 0.08 (p < 0.01) and 0.19 ± 0.03 versus 0.30 ± 0.09 (p < 0.05), respectively). The glutathione to tCr ratio (GSH/tCr) was correlated with T2 for the MPTP_6-10 weeks group (r = 0.83, p = 0.04). In the STR, however, GABA/tCr of the MPTP_6-10 weeks group was higher than that of the control group (0.25 ± 0.10 versus 0.16 ± 0.05, p < 0.05). These findings may be an in vivo depiction of the altered basal ganglion circuit in PD brain resulting from the degeneration of nigral dopaminergic neurons and disruption of nigrostriatal dopaminergic projections. Given the important role of non-human primates in translational studies, our findings provide better understanding of the complicated evolution of PD.
Collapse
Affiliation(s)
- Hwon Heo
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Bum Ahn
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeong Hun Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hyeonjin Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|