1
|
Chino T, Kinoshita S, Abo M. Repetitive Transcranial Magnetic Stimulation and Rehabilitation Therapy for Upper Limb Hemiparesis in Stroke Patients: A Narrative Review. Prog Rehabil Med 2023; 8:20230005. [PMID: 36866154 PMCID: PMC9970844 DOI: 10.2490/prm.20230005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Recent technological advances in non-invasive brain stimulation (NIBS) have led to the development of therapies for post-stroke upper extremity paralysis. Repetitive transcranial magnetic stimulation (rTMS), a NIBS technique, controls regional activity by non-invasively stimulating selected areas of the cerebral cortex. The therapeutic principle by which rTMS is thought to work is the correction of interhemispheric inhibition imbalances. The guidelines for rTMS for post-stroke upper limb paralysis have graded it as a highly effective treatment, and, based on functional brain imaging and neurophysiological testing, it has been shown to result in progress toward normalization. Our research group has published many reports showing improvement in upper limb function after administration of the NovEl Intervention Using Repetitive TMS and intensive one-to-one therapy (NEURO), demonstrating its safety and efficacy. Based on the findings to date, rTMS should be considered as a treatment strategy based on a functional assessment of the severity of upper extremity paralysis (Fugl-Meyer Assessment), and NEURO should be combined with pharmacotherapy, botulinum treatment, and extracorporeal shockwave therapy to maximize therapeutic effects. In the future, it will be important to establish tailormade treatments in which stimulation frequency and sites are adjusted according to the pathological conditions of interhemispheric imbalance, as revealed by functional brain imaging.
Collapse
Affiliation(s)
- Toshifumi Chino
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoji Kinoshita
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Anti-spastic effect of contralesional dorsal premotor cortex stimulation in stroke patients with moderate-to-severe spastic paresis: a randomized, controlled pilot trial. Acta Neurol Belg 2023:10.1007/s13760-023-02212-2. [PMID: 36809647 DOI: 10.1007/s13760-023-02212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE This study aimed at investigating the effect of a single-session repetitive transcranial magnetic stimulation (rTMS) of the contralesional dorsal premotor cortex on poststroke upper-limb spasticity. MATERIAL AND METHODS The study consisted of the following three independent parallel arms: inhibitory rTMS (n = 12), excitatory rTMS (n = 12), and sham stimulation (n = 13). The primary and secondary outcome measures were the Modified Ashworth Scale (MAS) and F/M amplitude ratio, respectively. A clinically meaningful difference was defined as a reduction in at least one MAS score. RESULTS There was a statistically significant change in MAS score within only the excitatory rTMS group over time [median (interquartile range) of - 1.0 (- 1.0 to - 0.5), p = 0.004]. However, groups were comparable in terms of median changes in MAS scores (p > 0.05). The proportions of patients achieving at least one MAS score reduction (9/12 in the excitatory rTMS group, 5/12 in the inhibitory rTMS group, and 5/13 in the control group) were also comparable (p = 0.135). For the F/M amplitude ratio, main time effect, main intervention effect, and time-intervention interaction effect were not statistically significant (p > 0.05). CONCLUSIONS Modulation of the contralesional dorsal premotor cortex with a single-session of excitatory or inhibitory rTMS does not appear to have an immediate anti-spastic effect beyond sham/placebo. The implication of this small study remains unclear and further studies into excitatory rTMS for the treatment of moderate-to-severe spastic paresis in poststroke patients should be undertaken. CLINICAL TRIAL REGISTRATION NO NCT04063995 (clinicaltrials.gov).
Collapse
|
3
|
Aoyama T, Kanazawa A, Kohno Y, Watanabe S, Tomita K, Kaneko F. Influence of Visual Stimulation-Induced Passive Reproduction of Motor Images in the Brain on Motor Paralysis After Stroke. Front Hum Neurosci 2021; 15:674139. [PMID: 34239429 PMCID: PMC8258409 DOI: 10.3389/fnhum.2021.674139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Finger flexor spasticity, which is commonly observed among patients with stroke, disrupts finger extension movement, consequently influencing not only upper limb function in daily life but also the outcomes of upper limb therapeutic exercise. Kinesthetic illusion induced by visual stimulation (KINVIS) has been proposed as a potential treatment for spasticity in patients with stroke. However, it remains unclear whether KINVIS intervention alone could improve finger flexor spasticity and finger extension movements without other intervention modalities. Therefore, the current study investigated the effects of a single KINVIS session on finger flexor spasticity, including its underlying neurophysiological mechanisms, and finger extension movements. To this end, 14 patients who experienced their first episode of stroke participated in this study. A computer screen placed over the patient's forearm displayed a pre-recorded mirror image video of the patient's non-paretic hand performing flexion-extension movements during KINVIS. The position and size of the artificial hand were adjusted appropriately to create a perception that the artificial hand was the patient's own. Before and after the 20-min intervention, Modified Ashworth Scale (MAS) scores and active range of finger extension movements of the paretic hand were determined. Accordingly, MAS scores and active metacarpophalangeal joint extension range of motion improved significantly after the intervention. Moreover, additional experimentation was performed using F-waves on eight patients whose spasticity was reduced by KINVIS to determine whether the same intervention also decreased spinal excitability. Our results showed no change in F-wave amplitude and persistence after the intervention. These results demonstrate the potential clinical significance of KINVIS as a novel intervention for improving finger flexor spasticity and extension movements, one of the most significant impairments among patients with stroke. The decrease in finger flexor spasticity following KINVIS may be attributed to neurophysiological changes not detectable by the F-wave, such as changes in presynaptic inhibition of Ia afferents. Further studies are certainly needed to determine the long-term effects of KINVIS on finger spasticity, as well as the neurophysiological mechanisms explaining the reduction in spasticity.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Atsushi Kanazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Shinya Watanabe
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
4
|
Tatsuno H, Hamaguchi T, Sasanuma J, Kakita K, Okamoto T, Shimizu M, Nakaya N, Abo M. Does a combination treatment of repetitive transcranial magnetic stimulation and occupational therapy improve upper limb muscle paralysis equally in patients with chronic stroke caused by cerebral hemorrhage and infarction?: A retrospective cohort study. Medicine (Baltimore) 2021; 100:e26339. [PMID: 34128880 PMCID: PMC8213260 DOI: 10.1097/md.0000000000026339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The clinical presentation of stroke is usually more severe in patients with intracerebral hemorrhage (ICH) than in those with cerebral infarction (CI); recovery of stroke-related muscle paralysis is influenced and limited by the type of stroke. To date, many patients have been treated by neurorehabilitation; however, the changes in the recovery of motor paralysis depending on the type of stroke, ICH or CI, have not been established. This study aimed to determine this difference in improvement of upper extremity paralysis using 2-week in-hospital NovEl intervention Using Repetitive transcranial magnetic stimulation combined with Occupational therapy (NEURO).We scrutinized the medical records of all patients with poststroke (ICH or CI) upper extremity muscle paralysis using Fugl-Meyer assessments (FMAs) who had been admitted to 6 hospitals between March 2010 and December 2018 for rehabilitation treatment. This was a multiinstitutional, open-label, retrospective cohort study without control patients. We evaluated the effects of NEURO on patients with CI and ICH by dividing them into 2 groups according to the type of stroke, after adjustment for age, sex, dominant hand, affected hand side, time since stroke, and prediction of recovery capacity in the upper extremity.The study included 1716 (CI [n = 876] and ICH [n = 840]) patients who had undergone at least 2 FMAs and had experienced stroke at least 6 months before. The type of stroke had no effect on the outcomes (changes in the FMA-upper extremity score, F[4,14.0] = 2.05, P = .09, partial η2 = 0.01). Patients from all 5 groups equally benefited from the treatment (improvement in FMA scores) according to the sensitivity analysis-stratified analysis (F = 0.08 to 1.94, P > .16, partial η2 < 0.001).We conclude that NEURO can be recommended for chronic stroke patients irrespective of the type of stroke.
Collapse
Affiliation(s)
- Hisashi Tatsuno
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo
| | - Toyohiro Hamaguchi
- Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Saitama
| | | | | | | | | | - Naoki Nakaya
- Department of Rehabilitation, Graduate School of Health Sciences, Saitama Prefectural University, Saitama
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo
| |
Collapse
|
5
|
Yoo IG. Electroencephalogram-based neurofeedback training in persons with stroke: A scoping review in occupational therapy. NeuroRehabilitation 2021; 48:9-18. [PMID: 33386824 DOI: 10.3233/nre-201579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurofeedback training targets the relevant brain response under minimal stress. It could be a promising approach for the treatment of patients with brain injury. OBJECTIVE This review aimed to examine the existing literature to confirm the effectiveness of applied electroencephalogram (EEG)-based neurofeedback training in the area of occupational therapy for upper limb stroke rehabilitation. METHOD All relevant literature published until July 1, 2020 in five prominent databases (PubMed, CINAHL, PsycINFO, MEDLINE Complete, and Web of Science) was reviewed, based on the five-step review framework proposed by Arksey and O'Malley. RESULTS After a thorough review, a total of 14 studies were included in this review. Almost studies reported significant improvements as a result of EEG-based neurofeedback training, but this had not always account for the differences in effectiveness between groups. However, the results of these studies suggested that neurofeedback training was effective as compared to the traditional treatment and more effective in combination with EEG than that with simple equipment application. CONCLUSION This review demonstrated the effectiveness of the combination of occupational therapy and EEG-based neurofeedback training. Most of these treatments are intended for inpatients, but they may be more effective for outpatients, especially if customized to their requirements. Also, such explorations to assess the suitability of the treatment for patient rehabilitation will help reduce barriers to effective interventions. An analysis of the opinions of participants and experts through satisfaction surveys will be helpful.
Collapse
Affiliation(s)
- I G Yoo
- Department of Occupational Therapy, College of Medical Sciences, Jeonju University, Hyoja-dong 3-ga, Wansan-gu, Jeonju-si, Jeollabuk-do, 560-759, Republic of Korea
| |
Collapse
|
6
|
Liu G, Chia CH, Cao Y, Tang XW, Tian S, Shen XY, Chen Y, Lu RR, Wu JF, Wu Y. Differential Changed Excitability of Spinal Motor Neurons Innervating Tibialis Anterior and Peroneus Muscles Cause Foot Inversion After Stroke. Front Neurol 2020; 11:544912. [PMID: 33329299 PMCID: PMC7732441 DOI: 10.3389/fneur.2020.544912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To study differential post-stroke changes of excitability of spinal motor neurons innervating a group of antagonist muscles of ankle and their effects on foot inversion. Methods: F waves in tibialis anterior (TA) and peroneus muscles (PN) were recorded. The condition of spasticity and foot inversion in stroke patients were also evaluated. The differences of F wave parameters between patients and healthy controls (HC), as well as TA and PN, were investigated. Results: There were natural differences in the persistence of the F waves (Fp) and F/M amplitude ratio (F/M) between TA and PN in HC. Stroke patients showed significantly higher F/M in TA and PN, while there was no difference in Fp comparing to HC. The natural differences in F wave parameters between TA and PN were differentially retained after stroke. The natural difference of the two muscles in Fp remained unchanged and the F/M difference disappeared in those without spasticity or foot inversion, while the Fp difference disappeared and the F/M difference remained in those with spasticity or foot inversion. Conclusion: Based on the natural difference of the number and size of spinal motor neurons innervating TA and PN, their excitability may change differently according to the severity of the stroke, which may be the reason of foot inversion.
Collapse
|
7
|
Enhancing Stroke Recovery Across the Life Span With Noninvasive Neurostimulation. J Clin Neurophysiol 2020; 37:150-163. [DOI: 10.1097/wnp.0000000000000543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Tang Z, Xuan C, Li X, Dou Z, Lan Y, Wen H. Effect of different pulse numbers of transcranial magnetic stimulation on motor cortex excitability: Single-blind, randomized cross-over design. CNS Neurosci Ther 2019; 25:1277-1281. [PMID: 31696644 PMCID: PMC6834918 DOI: 10.1111/cns.13248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022] Open
Abstract
AIMS We aimed to investigate the effect of different pulse numbers of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the motor cortex on cortical excitability in healthy participants. METHODS Fifteen healthy participants received 600 and 1200 pulses of 5-Hz rTMS on separate days in a random order. Stimulation (duration, 2 seconds and interval, 1 seconds) was delivered over the left primary motor cortex for the hand, at 90% of resting motor threshold (rMT). The rMT and motor evoked potential (MEP) were measured before stimulation, and at 0 and 30 minutes after rTMS. RESULTS No significant differences were observed between the two conditions for MEP (P = .919) or rMT (P = .266). Compared with baseline, MEP was increased significantly at 0 (P < .001) and 30 minutes (P < .001) after stimulation. After stimulation, rMT was decreased at 0 minute for the 600 and 1200 pulse conditions (P < .001), but had recovered by 30 minutes (P = .073). CONCLUSION Subthreshold 5-Hz rTMS increased motor cortex excitability in healthy humans. However, the number of pulses may exhibit a ceiling effect in that beyond a certain point, that is, increasing the number of pulses may exhibit no further increase in cortical excitability.
Collapse
Affiliation(s)
- Zhi‐Ming Tang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chun‐Yu Xuan
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xin Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zu‐Lin Dou
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yu‐Jie Lan
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Hong‐Mei Wen
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Jin JN, Wang X, Li Y, Wang H, Liu ZP, Yin T. rTMS combined with motor training changed the inter-hemispheric lateralization. Exp Brain Res 2019; 237:2735-2746. [PMID: 31435692 DOI: 10.1007/s00221-019-05621-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) can be an effective method for enhancing motor function. However, the effects of rTMS-MT on inter-hemispheric lateralization remain unclear. Nineteen healthy volunteers were recruited. The volunteers were randomized to receive 2 weeks of rTMS-MT or MT to improve the motor function of the nondominant hand. Hand dexterity was tested by the Nine-Hole Peg Test. Resting motor threshold (RMT), motor evoked potentials (MEP) and electroencephalography (EEG) in the resting state with eyes closed were recorded, to calculate inter-hemispheric lateralization before and after rTMS-MT or MT. rTMS-MT and MT improved the dexterity and MEP amplitude of the nondominant hand. Furthermore, there were significant changes in the lateralization of not only power spectral density, but also information transmission efficiency between regions following rTMS-MT, especially between the central cortices of both hemispheres. However, although the lateralization change of the power spectral density between the central cortices was observed following MT, there was no such change for information transmission efficiency between any cortices. These results suggested that rTMS-MT could modulate inter-hemispheric lateralization. Changes in inter-hemispheric lateralization might be an important neural mechanism by which rTMS-MT improves motor function. These results could be helpful for understanding the brain mechanism of rTMS-MT.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
Valkenborghs SR, Callister R, Visser MM, Nilsson M, van Vliet P. Interventions combined with task-specific training to improve upper limb motor recovery following stroke: a systematic review with meta-analyses. PHYSICAL THERAPY REVIEWS 2019. [DOI: 10.1080/10833196.2019.1597439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah R. Valkenborghs
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Science and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Robin Callister
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Science and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Milanka M. Visser
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Paulette van Vliet
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Centre for Research Excellence in Stroke Rehabilitation and Recovery, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
11
|
Tamashiro H, Kinoshita S, Okamoto T, Urushidani N, Abo M. Effect of baseline brain activity on response to low-frequency rTMS/intensive occupational therapy in poststroke patients with upper limb hemiparesis: a near-infrared spectroscopy study. Int J Neurosci 2018; 129:337-343. [DOI: 10.1080/00207454.2018.1536053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hiroaki Tamashiro
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
| | - Shoji Kinoshita
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Aomori Shintoshi Hospital, Aomori, Aomori, Japan
| | - Takatsugu Okamoto
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
| | - Naoki Urushidani
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
| |
Collapse
|
12
|
Effects of Repetitive Facilitative Exercise on Spasticity in the Upper Paretic Limb After Subacute Stroke. J Stroke Cerebrovasc Dis 2018; 27:2863-2868. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022] Open
|
13
|
Jin JN, Wang X, Li Y, Jin F, Liu ZP, Yin T. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band. Front Behav Neurosci 2017; 11:234. [PMID: 29238296 PMCID: PMC5712595 DOI: 10.3389/fnbeh.2017.00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8–13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Comparison of the Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation with That of Theta Burst Stimulation on Upper Limb Motor Function in Poststroke Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4269435. [PMID: 29230407 PMCID: PMC5694591 DOI: 10.1155/2017/4269435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
Background The purpose of this study was to evaluate the difference between the therapeutic effect of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and that of continuous theta burst stimulation (cTBS), when each is combined with intensive occupational therapy (OT), in poststroke patients with upper limb hemiparesis. Materials and Methods The study subjects were 103 poststroke patients with upper limb hemiparesis, who were divided into two groups: the LF-rTMS group (n = 71) and the cTBS group (three pulse bursts at 50 Hz) (n = 32). Each subject received 12 sessions of repetitive transcranial magnetic stimulation of 2,400 pulses applied to the nonlesional hemisphere and 240-min intensive OT (two 60-min one-to-one training sessions and two 60-min self-training exercises) daily for 15 days. Motor function was evaluated using the Fugl-Meyer Assessment (FMA) and the performance time of the Wolf motor function test (WMFT) was determined on the days of admission and discharge. Results Both groups showed a significant increase in the FMA score and a short log performance time of the WMFT (p < 0.001), but the increase in the FMA score was higher in the LF-rTMS group than the cTBS group (p < 0.05). Conclusion We recommend the use of 2400 pulses of LF-rTMS/OT for 2 weeks as treatment for hemiparetic patients.
Collapse
|
15
|
McIntyre A, Mirkowski M, Thompson S, Burhan AM, Miller T, Teasell R. A Systematic Review and Meta-Analysis on the Use of Repetitive Transcranial Magnetic Stimulation for Spasticity Poststroke. PM R 2017; 10:293-302. [PMID: 29045857 DOI: 10.1016/j.pmrj.2017.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/08/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Spasticity is a common and potentially debilitating complication that develops after stroke, arising in approximately 30% of patients. OBJECTIVE To evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in improving spasticity after stroke. DESIGN Meta-analysis and systematic review. SETTING Not applicable. PATIENTS A total of 273 poststroke (hemorrhagic = 123, ischemic = 150) participants were included with sample sizes ranging from 5 to 80. The majority of participants were male (66.0%) with a mean age ranging from 55.0 to 64.6 years. Mean stroke duration ranged from 6 months to 10 years. METHODS A literature search of multiple databases was conducted for articles published in English from January 1980 to April 2015 using select keywords. Studies were included if (1) the population included was >50% stroke patients; (2) the sample size included ≥4 subjects; (3) the intervention applied was rTMS; and (4) upper extremity spasticity was assessed pre- and postintervention. Randomized controlled trials (RCTs) were assessed for methodologic quality with the Physiotherapy Evidence Database tool. All research designs were given a level of evidence according to a modified Sackett Scale. MAIN OUTCOME MEASUREMENTS Modified Ashworth Scale (MAS). RESULTS Ten studies met the inclusion criteria: 2 RCTs (Physiotherapy Evidence Database scores 8-9) and 8 pre-post studies. Meta-analyses of primarily uncontrolled pre-post studies found significant improvements in MAS for elbow (P < .001), wrist (P < .001), and finger flexors (P < .001). However, a meta-analysis of the 2 available RCTs failed to find a significant rTMS treatment effect on MAS for the wrist (standardized difference = .34, P = .30). CONCLUSIONS There is limited available evidence to support the use of rTMS in improving spasticity poststroke. Despite the positive findings reported, better powered and appropriately controlled trials are necessary. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Amanda McIntyre
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Magdalena Mirkowski
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Spencer Thompson
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Amer M Burhan
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Tom Miller
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Robert Teasell
- Lawson Health Research Institute, Parkwood Institute, London, ON, Canada.,St Joseph's Health Care, Parkwood Institute, London, ON; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, Parkwood Institute, London; St Joseph's Health Care, Parkwood Institute, London; and Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Spasticity Management: The Current State of Transcranial Neuromodulation. PM R 2017; 9:1020-1029. [DOI: 10.1016/j.pmrj.2017.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
|
17
|
Pérez-Cruzado D, Merchán-Baeza JA, González-Sánchez M, Cuesta-Vargas AI. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J 2016; 64:91-112. [PMID: 28032336 DOI: 10.1111/1440-1630.12342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIM Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. METHODS A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. RESULTS Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. CONCLUSIONS In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869.
Collapse
Affiliation(s)
- David Pérez-Cruzado
- Department of Physiotherapy, University of Malaga, Clinimetric Group FE-14 Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Jose Antonio Merchán-Baeza
- Department of Physiotherapy, University of Malaga, Clinimetric Group FE-14 Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | | | - Antonio I Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, Clinimetric Group FE-14 Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain.,School of Clinical Sciences of the Faculty of Health at the Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Abstract
Spasticity is a common cause of long-term disability in poststroke hemiplegic patients. We investigated whether intermittent theta burst stimulation (iTBS) could reduce upper-limb spasticity after a stroke. Fifteen hemiplegic stroke patients were recruited for a double-blind sham-controlled cross-over design study. A single session of iTBS or sham stimulation was delivered on the motor hotspot of the affected flexor carpi radialis muscle in a random and counterbalanced order with a 1-week interval. Modified Ashworth scale (MAS), modified Tardieu scale (MTS), H-wave/M-wave amplitude ratio, peak torque (PT), peak torque angle (PTA), work of affected wrist flexor, and rectified integrated electromyographic activity of the flexor carpi radialis muscle were measured before, immediately after, 30 min after, and 1 week after iTBS or sham stimulation. Repeated-measures analysis of variance showed a significant interaction between time and intervention for the MAS, MTS, PT, PTA, and rectified integrated electromyographic activity (P<0.05), indicating that these parameters were significantly improved by iTBS compared with sham stimulation. However, the H-wave/M-wave amplitude ratio and work were not affected. MAS and MTS significantly improved for at least 30 min after iTBS, but the other parameters only improved immediately after iTBS (P<0.05). In conclusion, iTBS on the affected hemisphere may help to reduce poststroke spasticity transiently.
Collapse
|
19
|
Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients. Transl Stroke Res 2016; 7:172-9. [DOI: 10.1007/s12975-016-0456-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|