Abstract
The status and potential functions of taurine in the retina have been reviewed. Taurine is present in high concentrations in the retina of all species tested, while the retinal concentrations of the enzymes necessary to synthesize taurine are presumed to vary among those species. The documented low activity of cysteinesulfinic acid decarboxylase, a key enzyme in taurine biosynthesis, in the livers of the cat, monkey and human possibly reflect low activity in their retinas, indicating reliance on the diet as an important source of taurine. Both high- and low-affinity binding proteins and uptake systems have been described for taurine in retinal tissue. Evoked release of taurine by light and other depolarizing stimuli have been well documented. Retinal pathologies including diminished ERGs and morphologic changes have been reported for animals and man deficient in taurine. Possible functions for taurine in the retina include: (1) protection of the photoreceptor - based on the shielding effects of taurine on rod outer segments exposed to light and chemicals; (2), regulation of Ca2+ transport - based on the modulatory effects of taurine on Ca2+ fluxes in the presence and absence of ATP; and (3) regulation of signal transduction - based on the inhibitory effects of taurine on protein phosphorylation.
Collapse