1
|
Mertz P, Hentgen V, Boursier G, Elhani I, Calas L, Delon J, Georgin-Lavialle S. [Autoinflammatory diseases associated with IL-18]. Rev Med Interne 2024:S0248-8663(24)00736-7. [PMID: 39155178 DOI: 10.1016/j.revmed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Autoinflammatory diseases (AIDs) are conditions characterized by dysfunction of innate immunity, causing systemic inflammation and various clinical symptoms. The field of AIDs has expanded due to improved comprehension of pathophysiological mechanisms and advancements in genomics techniques. A new emerging category of AIDs is characterized by a significant increase in interleukin 18 (IL-18), a pro-inflammatory cytokine synthesized in macrophages and activated by caspase 1 via various inflammasomes. IL-18 plays a role in the regulation of innate and adaptive immunity. IL-18 is involved in various functions, such as the proliferation, survival, and differentiation of immune cells, tissue infiltration of immune cells, polarization of immune responses, and production of other pro-inflammatory cytokines. This review analyzes the literature on IL-18 regarding its functions and its implications in the diagnosis and treatment of AIDs. IL-18-associated AIDs comprise Still's disease and diseases associated with mutations in NLRC4, XIAP, CDC42, and PSTPIP1, as well as IL-18BP deficiencies. With the exception of PSTPIP1-associated diseases, these conditions all carry a risk of macrophagic activation syndrome. Measuring IL-18 levels in serum can aid in the diagnosis, prognosis, and monitoring of these diseases. Therapies targeting IL-18 and its signaling pathways are currently under investigation.
Collapse
Affiliation(s)
- Philippe Mertz
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France; Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Véronique Hentgen
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France
| | - Guilaine Boursier
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Service de génétique moléculaire et cytogénomique, laboratoire de référence des maladies rares et auto-inflammatoires, IRMB, Inserm, CHU de Montpellier, université de Montpellier, Montpellier, France
| | - Ines Elhani
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France
| | - Laure Calas
- Laboratoire de biochimie et hormonologie, hôpital Tenon, APHP, Sorbonne université, 4, rue de la Chine, 75020 Paris, France; Inserm, UMRS 1155 UPMC, hôpital Tenon, Sorbonne université, Paris, France
| | - Jerome Delon
- Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
2
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Obi ON, Saketkoo LA, Russell AM, Baughman RP. Sarcoidosis: Updates on therapeutic drug trials and novel treatment approaches. Front Med (Lausanne) 2022; 9:991783. [PMID: 36314034 PMCID: PMC9596775 DOI: 10.3389/fmed.2022.991783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous inflammatory disease of unknown etiology. It affects the lungs in over 90% of patients yet extra-pulmonary and multi-organ involvement is common. Spontaneous remission of disease occurs commonly, nonetheless, over 50% of patients will require treatment and up to 30% of patients will develop a chronic progressive non-remitting disease with marked pulmonary fibrosis leading to significant morbidity and death. Guidelines outlining an immunosuppressive treatment approach to sarcoidosis were recently published, however, the strength of evidence behind many of the guideline recommended drugs is weak. None of the drugs currently used for the treatment of sarcoidosis have been rigorously studied and prescription of these drugs is often based on off-label” indications informed by experience with other diseases. Indeed, only two medications [prednisone and repository corticotropin (RCI) injection] currently used in the treatment of sarcoidosis are approved by the United States Food and Drug Administration. This situation results in significant reimbursement challenges especially for the more advanced (and often more effective) drugs that are favored for severe and refractory forms of disease causing an over-reliance on corticosteroids known to be associated with significant dose and duration dependent toxicities. This past decade has seen a renewed interest in developing new drugs and exploring novel therapeutic pathways for the treatment of sarcoidosis. Several of these trials are active randomized controlled trials (RCTs) designed to recruit relatively large numbers of patients with a goal to determine the safety, efficacy, and tolerability of these new molecules and therapeutic approaches. While it is an exciting time, it is also necessary to exercise caution. Resources including research dollars and most importantly, patient populations available for trials are limited and thus necessitate that several of the challenges facing drug trials and drug development in sarcoidosis are addressed. This will ensure that currently available resources are judiciously utilized. Our paper reviews the ongoing and anticipated drug trials in sarcoidosis and addresses the challenges facing these and future trials. We also review several recently completed trials and draw lessons that should be applied in future.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Ogugua Ndili Obi,
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA, United States,University Medical Center—Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, LA, United States,Section of Pulmonary Medicine, Louisiana State University School of Medicine, New Orleans, LA, United States,Department of Undergraduate Honors, Tulane University School of Medicine, New Orleans, LA, United States
| | - Anne-Marie Russell
- Exeter Respiratory Institute University of Exeter, Exeter, United Kingdom,Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom,Faculty of Medicine, Imperial College and Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Robert P. Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Caspase-1 and interleukin-18 in children with post infectious bronchiolitis obliterans: a case-control study. Eur J Pediatr 2022; 181:3093-3101. [PMID: 35705877 DOI: 10.1007/s00431-022-04528-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022]
Abstract
UNLABELLED The exact immunological mechanisms of post infectious bronchiolitis obliterans (PIBO) in childhood are not fully known. It has been shown that the inflammasome and IL-18 pathway play important roles in the pathogenesis of lung fibrosis. We aimed to investigate the role of caspase-1, IL-18, and IL-18 components in PIBO. From January to May 2020, children with PIBO, children with history of influenza infection without PIBO, and healthy children were asked to participate in the study in three pediatric pulmonology centers. Serum caspase-1, IL-18, IL-18BP, IL-18R, and INF-γ levels were measured by ELISA and compared between the 3 groups. There were 21 children in the PIBO group, 16 children in the influenza group, and 39 children in the healthy control group. No differences in terms of age and gender between the 3 groups were found. IL-18 and IL-18BP levels were higher in the healthy control group (p = 0.018, p = 0.005, respectively). IL-18R was higher in the PIBO group (p = 0.001) and caspase-1 was higher in the PIBO and influenza group than the healthy control group (p = 0.002). IFN-γ levels did not differ between the 3 groups. IL-18BP/IL-18 was higher in the influenza group than the PIBO group and the healthy control group (p = 0.003). CONCLUSIONS Caspase-1 level was increased in patients with PIBO which suggests that inflammasome activation may have a role in fibrosis; however, IL-18 level was found to be low. Mediators other than IL-18 may be involved in the inflammatory pathway in PIBO. Further immunological studies investigating inflammasome pathway are needed for PIBO with chronic inflammation. WHAT IS KNOWN • Post infectious bronchiolitis obliterans (PIBO) is a rare, severe chronic lung disease during childhood which is associated with inflammation and fibrosis which lead to partial or complete luminal obstruction especially in small airways. • The exact immunological mechanisms of PIBO in childhood are not fully known. WHAT IS NEW • Inflammasome activation persists even years after acute infection and may play a role in fibrosis in PIBO. • Mediators other than IL-18 may be involved in these inflammatory pathway.
Collapse
|
5
|
Wang X, Yang J, Wu L, Tong C, Zhu Y, Cai W, Wan B, Zhang X. Adiponectin inhibits the activation of lung fibroblasts and pulmonary fibrosis by regulating the nuclear factor kappa B (NF-κB) pathway. Bioengineered 2022; 13:10098-10110. [PMID: 35435119 PMCID: PMC9162013 DOI: 10.1080/21655979.2022.2063652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common pulmonary interstitial disease with a high mortality rate. Adiponectin (APN) is reportedly an effective therapy for fibrosis-related diseases. This study aimed to investigate the potential effects of APN on IPF. Male BALB/c mice were injected with bleomycin (BLM) and treated with different doses of APN (0.1, 0.25, and 0.5 mg/kg). The body weights of the mice were recorded. Immunohistochemical, hematoxylin and eosin, and Masson staining were performed to evaluate pulmonary histopathological changes. Enzyme-linked immunosorbent assay (ELISA) and western blotting were performed to assess tissue inflammation. The human lung fibroblasts HELF were stimulated with TGF-β1 and treated with different doses of APN (2.5, 5, and 10 μg/ml). Cell proliferation, inflammation, and fibrosis were determined by MTT assay, EdU assay, colony formation assay, ELISA, and western blotting. APN significantly attenuated BLM-induced body weight loss, alveolar destruction, and collagen fiber accumulation in mice (p < 0.05). APN decreased the expression of α-SMA and collagen I and reduced the concentration of TNF-α, IL-6, IL-1β, and IL-18 in lung tissues (p < 0.05). In TGF-β1-treated HELF cells, cell proliferation and colony formation were inhibited by APN (p < 0.05). Additionally, the expression of α-SMA, collagen I, and pro-inflammatory cytokines were suppressed by APN (p < 0.05). APN inhibited the phosphorylation of IκB and nuclear translocation of p65. In conclusion, these findings suggest that APN is an effective agent for controlling IPF progression. The antifibrotic effects of APN might be mediated via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Chunran Tong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ying Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | | | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
6
|
Manika K, Domvri K, Kyriazis G, Kontakiotis T, Papakosta D. BALF and BLOOD NK- cells in different stages of pulmonary sarcoidosis. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2022; 38:e2021039. [PMID: 35115746 PMCID: PMC8787376 DOI: 10.36141/svdld.v38i4.10810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Background and objective: Data on natural killer (NK)- and natural killer T (NKT)- like cells in the immunopathogenesis of sarcoidosis remain limited. The aim was to assess NK- and NKT-like cells across different stages in bronchoalveolar lavage (BALF) versus peripheral blood (PB) in comparison to controls. Methods: Forty four patients (32 women and 12 men, mean age 46.6±14.4 years) with biopsy-proven sarcoidosis and 10 healthy individuals (6 women, 4 men mean age 52.6±19.1 years) were submitted to BALF. Total cells and cell differentials were counted, while CD45+, CD3+, CD4+, CD8+, CD19+, CD3-CD16/56 (NK cells) and CD3+CD16/56+ (NKT-like cells) were determined by dual flow cytometry in BALF and PB. Results: A significantly lower percentage of both NK and NKT-like cells was observed in BALF of controls and sarcoid patients (SP) compared to PB. Both BALF NK and NKT-cell counts were significantly higher in SP than in controls (NK: p=0.046, NKT-like: p=0.012) In addition BALF NK cell percentage differed among sarcoidosis stages (p=0.005). In PB NK-cell count was lower in sarcoidosis patients but the difference did not reach statistical significance. Also, in sarcoid patients’ BALF NK-cell percentage negatively correlated with lymphocyte percentage (r=-0.962, p<0.001). Conclusions: The increased count of BALF NK and NKT-like cells in sarcoidosis compared to controls along with the increase of NK cells with stage progression are in line with a growing number of investigations suggesting the involvement of NK- and NKT-like cells in the pathogenesis of sarcoidosis.
Collapse
Affiliation(s)
- Katerina Manika
- Pulmonary Department, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - Kalliopi Domvri
- Pulmonary Department, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - George Kyriazis
- Pulmonary Department, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - Theodoros Kontakiotis
- Pulmonary Department, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - Despina Papakosta
- Pulmonary Department, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| |
Collapse
|
7
|
Nienhuis WA, Grutters JC. Potential therapeutic targets to prevent organ damage in chronic pulmonary sarcoidosis. Expert Opin Ther Targets 2021; 26:41-55. [PMID: 34949145 DOI: 10.1080/14728222.2022.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous inflammatory disease with high chances of reduced quality of life, irreversible organ damage, and reduced life expectancy when vital organs are involved. Any organ system can be affected, and the lungs are most often affected. There is no preventive strategy as the exact etiology is unknown, and complex immunogenetic and environmental factors determine disease susceptibility and phenotype. Present-day treatment options originated from clinical practice and are effective in many patients. However, a substantial percentage of patients suffer from unacceptable side effects or still develop refractory, threatening pulmonary or extrapulmonary disease. AREAS COVERED As non-caseating granulomas, the pathological hallmark of disease, are assigned to divergent activation and regulation of the immune system, targets in relation to the possible triggers of granuloma formation and their sequelae were searched and reviewed. EXPERT OPINION :The immunopathogenesis underlying sarcoidosis has been a dynamic field of study. Several recent new insights give way to promising new therapeutic targets, such as certain antigenic triggers (e.g. from Aspergillus nidulans), mTOR, JAK-STAT and PPARγ pathways, the NRP2 receptor and MMP-12, which await further exploration. Clinical and trigger related phenotyping, and molecular endotyping in sarcoidosis will likely hold the key for precision medicine in the future.
Collapse
Affiliation(s)
- W A Nienhuis
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearth and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Kokosi MA, Margaritopoulos GA, Wells AU. Personalised medicine in interstitial lung diseases. Eur Respir Rev 2018; 27:27/148/170117. [DOI: 10.1183/16000617.0117-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Interstitial lung diseases in general, and idiopathic pulmonary fibrosis in particular, are complex disorders with multiple pathogenetic pathways, various disease behaviour profiles and different responses to treatment, all facets that make personalised medicine a highly attractive concept. Personalised medicine is aimed at describing distinct disease subsets taking into account individual lifestyle, environmental exposures, genetic profiles and molecular pathways. The cornerstone of personalised medicine is the identification of biomarkers that can be used to inform diagnosis, prognosis and treatment stratification. At present, no data exist validating a personalised approach in individual diseases. However, the importance of the goal amply justifies the characterisation of genotype and pathway signatures with a view to refining prognostic evaluation and trial design, with the ultimate aim of selecting treatments according to profiles in individual patients.
Collapse
|
9
|
Cordero MD, Alcocer-Gómez E. Inflammasome in the Pathogenesis of Pulmonary Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:111-151. [PMID: 30536170 PMCID: PMC7123416 DOI: 10.1007/978-3-319-89390-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lung diseases are common and significant causes of illness and death around the world. Inflammasomes have emerged as an important regulator of lung diseases. The important role of IL-1 beta and IL-18 in the inflammatory response of many lung diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18 from their precursors into the active forms is tightly regulated by inflammasomes. In this chapter, we structurally review current evidence of inflammasome-related components in the pathogenesis of acute and chronic lung diseases, focusing on the "inflammasome-caspase-1-IL-1 beta/IL-18" axis.
Collapse
Affiliation(s)
- Mario D. Cordero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
10
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Naumnik W, Naumnik B, Niklińska W, Ossolińska M, Chyczewska E. Interleukin-33 as a New Marker of Pulmonary Sarcoidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 866:1-6. [DOI: 10.1007/5584_2015_142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Angiogenic axis angiopoietin-1 and angiopoietin-2/Tie-2 in non-small cell lung cancer: a bronchoalveolar lavage and serum study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 788:341-8. [PMID: 23835996 DOI: 10.1007/978-94-007-6627-3_46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), ligands for the Tie-2 receptor expressed on endothelial cells, play a critical role in angiogenesis, in concert with vascular endothelial growth factor (VEGF). Angiogenesis is important for tumor growth and development and also is implicated in the pathogenesis of interstitial lung diseases. The aim of this study was to evaluate the concentration of Ang-1, Ang-2, Tie-2, interleukin-18 (IL-18), transforming growth factor beta-1 (TGF β1), and VEGF domain in both serum and bronchoalveolar lavage fluid (BALF) of lung cancer patients before chemotherapy. We studied 45 non-small cell lung cancer (NSCLC) patients (M/F; 38/7; mean age 62 ± 4 years). The age-matched control groups consisted of 15 sarcoidosis (BBS), 15 hypersensivity pneumonitis (HP), and 15 healthy subjects. The patients with NSCLC had a significantly higher level of Ang-1 compared with the BBS and healthy subjects, and a higher level of Ang-2 compared with the healthy subjects in both serum and BALF. BALF level of IL-18 was lower in the NSCLC than that in the HP group, but higher than that in the BBS patients. Serum level of IL-18 was higher in the NSCLC than in the healthy subjects. The NSCLC group had lower VEGF in BALF than that in healthy subjects. Receiver-operating characteristics (ROC) curves were applied to find the cut-off the serum levels of Ang-1 and Ang-2 levels in BALF. We did not find any correlation between the levels of Ang-1, Ang-2, Tie-2, and the stage of tumor or treatment response (prospectively). We conclude that the angiogenic axis Ang-1 and Ang-2/Tie-2 may play an important role in lung cancer development and their concentrations may be a useful marker at the time of initial diagnosis of lung cancer.
Collapse
Affiliation(s)
- W Naumnik
- Department of Lung Diseases, Medical University of Bialystok, 14 Zurawia St, 15-540, Bialystok, Poland,
| | | | | | | | | |
Collapse
|