Ganesh T, Estrada M, Duffin J, Cheng HL. T2* and T1 assessment of abdominal tissue response to graded hypoxia and hypercapnia using a controlled gas mixing circuit for small animals.
J Magn Reson Imaging 2016;
44:305-16. [PMID:
26872559 DOI:
10.1002/jmri.25169]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
PURPOSE
To characterize T2* and T1 relaxation time response to a wide spectrum of gas challenges in extracranial tissues of healthy rats.
MATERIALS AND METHODS
A range of graded gas mixtures (hyperoxia, hypercapnia, hypoxia, and hypercapnic hypoxia) were delivered through a controlled gas-mixing circuit to mechanically ventilated and intubated rats. Quantitative magnetic resonance imaging (MRI) was performed on a 3T clinical scanner; T2* and T1 maps were computed to determine tissue response in the liver, kidney cortex, and paraspinal muscles. Heart rate and blood oxygen saturation (SaO2 ) were measured through a rodent oximeter and physiological monitor.
RESULTS
T2* decreases consistent with lowered SaO2 measurements were observed for hypercapnia and hypoxia, but decreases were significant only in liver and kidney cortex (P < 0.05) for >10% CO2 and <15% O2 , with the new gas stimulus, hypercapnic hypoxia, producing the greatest T2* decrease. Hyperoxia-related T2* increases were accompanied by negligible increases in SaO2 . T1 generally increased, if at all, in the liver and decreased in the kidney. Significance was observed (P < 0.05) only in kidney for >90% O2 and >5% CO2 .
CONCLUSION
T2* and T1 provide complementary roles for evaluating extracranial tissue response to a broad range of gas challenges. Based on both measured and known physiological responses, our results are consistent with T2* as a sensitive marker of blood oxygen saturation and T1 as a weak marker of blood volume changes. J. Magn. Reson. Imaging 2016;44:305-316.
Collapse