Kouyoumdjian M, Borges DR, Prado ES, Prado JL. Identification of receptors in the liver that mediate endocytosis of circulating tissue kallikreins.
BIOCHIMICA ET BIOPHYSICA ACTA 1989;
980:299-304. [PMID:
2713408 DOI:
10.1016/0005-2736(89)90316-7]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The liver plays an important role in the clearance, by receptor-mediated endocytosis, of circulating glycoproteins. It has been demonstrated that tissue kallikreins, which are acid glycoproteins, circulate in plasma, where they are poorly inhibited by plasma proteins. We have shown that the liver is the main organ that clears tissue kallikreins from the circulation. We now report the identification of receptors involved in this clearance. Using a perfused rat-liver system, and as models, pig pancreatic (PPK) and horse urinary (HoUK) kallikreins, we have found that: (a) the binding of PPK to the perfused liver was inhibited by 50 mM methyl alpha-D-mannoside and 20 microM mannan, was partially inhibited by 50 mM mannose and was unaffected by 1.5 microM asialofetuin; (b) binding of HoUK to the perfused liver was inhibited by 1.5 microM asialofetuin, 50 mM galactose and 50 mM lactose and was unaffected by 50 mM mannose; (c) the clearance rate of both kallikreins followed the equation y = a.xb; (d) their binding was Ca2+-dependent and their clearance was inhibited by 3 mM chloroquine and 10 mM methylamine. Using isolated liver cells and tritiated HoUK, we calculated that 500,000 receptors/cell were present and the Scatchard plot showed that there were two apparent affinity constants: 0.24.10(9) l/M) (high-affinity) and 0.3.10(8) l/M (low-affinity). These results show that PPK is recognized by a liver mannose receptor and HoUK by the galactose receptor. The liver uptake of native and circulating tissue kallikreins thus emerges as a mechanism by which their levels in plasma are regulated.
Collapse