1
|
Sharma A, Streets J, Bhatt P, Patel P, Sutariya V, Varghese Gupta S. Formulation and Characterization of Raloxifene Nanostructured Lipid Carriers for Permeability and Uptake Enhancement Applications. Assay Drug Dev Technol 2022; 20:164-174. [DOI: 10.1089/adt.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anju Sharma
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Jarriaun Streets
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Priyanka Bhatt
- Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher College, Rochester, New York, USA
| | | | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Dargue R, Zia R, Lau C, Nicholls AW, Dare TO, Lee K, Jalan R, Coen M, Wilson ID. Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure. Toxicol Sci 2021; 175:87-97. [PMID: 32061126 PMCID: PMC7197950 DOI: 10.1093/toxsci/kfaa023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The metabolic fate, toxicity, and effects on endogenous metabolism of paracetamol (acetaminophen, APAP) in 22 female Landrace cross large white pigs were evaluated in a model of acute liver failure (ALF). Anesthetized pigs were initially dosed at 250 mg/kg via an oroduodenal tube with APAP serum concentrations maintained above 300 mg/l using maintenance doses of 0.5–4 g/h until ALF. Studies were undertaken to determine both the metabolic fate of APAP and its effects on the endogenous metabolic phenotype of ALF in using 1H NMR spectroscopy. Increased concentrations of citrate combined with pre-ALF increases in circulating lactate, pyruvate, and alanine in plasma suggest mitochondrial dysfunction and a switch in hepatic energy metabolism to glycolysis in response to APAP treatment. A specific liquid chromatography-tandem mass spectrometry assay was used to quantify APAP and metabolites. The major circulating and urinary metabolite of APAP was the phenolic glucuronide (APAP-G), followed by p-aminophenol glucuronide (PAP-G) formed from N-deacetylated APAP. The PAP produced by N-deacetylation was the likely cause of the methemoglobinemia and kidney toxicity observed in this, and previous, studies in the pig. The phenolic sulfate of APAP, and the glutathione-derived metabolites of the drug were only found as minor components (with the cysteinyl conjugate detected but not the mercapturate). Given its low sulfation, combined with significant capacity for N-deacetylation the pig may represent a poor translational model for toxicology studies for compounds undergoing significant metabolism by sulfation, or which contain amide bonds which when hydrolyzed to unmask an aniline lead to toxicity. However, the pig may provide a useful model where extensive amide hydrolysis is seen for drugs or environmental chemicals in humans, but not in, eg, the rat and dog which are the preclinical species normally employed for safety assessment.
Collapse
Affiliation(s)
- Rebecca Dargue
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Rabiya Zia
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Chungho Lau
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | - Karla Lee
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, UK
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2PF, UK
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK.,Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
3
|
Burkina V, Zamaratskaia G, Sakalli S, Giang PT, Zlabek V, Rasmussen MK. Tissue-specific expression and activity of cytochrome P450 1A and 3A in rainbow trout (Oncorhynchus mykiss). Toxicol Lett 2021; 341:1-10. [PMID: 33429014 DOI: 10.1016/j.toxlet.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Piscine cytochrome P450 (CYP) enzymes play an important role in the metabolism of xenobiotics. Xenobiotics often act as inducers of CYP1A1 and CYP3A expression and activity in fish. We compared constitutive mRNA expression of CYP1A1, CYP3A27, and CYP3A45 and catalytic activity of CYP1A (7-ethoxyresorufin-O-deethylation, EROD) and CYP3A-like (benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation, BFCOD) enzymes in the following six rainbow trout tissues: liver, gill, heart, brain, intestine, and gonad. mRNA expression and activity were present in all investigated tissues. The CYP1A1 mRNA expression was higher in the liver, gill, heart, and brain compared to gonad and intestine. The intestine was the main site of CYP3A27 and CYP3A45 expression. The highest EROD and BFCOD activity was observed in liver tissue followed in descending order by heart, brain, gill, intestine, and gonad. Such differences might be related to the role of CYP physiological functions in the specific tissue. Rainbow trout exposure to 50 mg/kg of β-naphthoflavone for 48 h resulted in a 7.5- and 5.9-fold increase in liver EROD and BFCOD activity, respectively. In vitro EROD activity inhibition with ellipticine showed tissue-specific inhibition, while ketoconazole decreased BFCOD activity by 50-98 % in all tissues. Further studies are needed to identify all CYP isoforms that are responsible for these activities and modes of regulation.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic; Research Institute for Aquaculture No 1, Dinh Bang, Tu Son, Bac Ninh, Viet Nam
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | | |
Collapse
|
4
|
Ye JY, Chen ZY, Huang CL, Huang B, Zheng YR, Zhang YF, Lu BY, He L, Liu CS, Long XY. A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied. Int J Nanomedicine 2020; 15:6503-6518. [PMID: 32922013 PMCID: PMC7457831 DOI: 10.2147/ijn.s259993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Objective A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies. Methods In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model. Results The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05). Conclusion A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.
Collapse
Affiliation(s)
- Jing-Yi Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zhong-Yun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chuan-Li Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Bei Huang
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yu-Rong Zheng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ying-Feng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ban-Yi Lu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Lin He
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Ying Long
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.,Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Li H, Lu S, Luo M, Li X, Liu S, Zhang T. A matrix dispersion based on phospholipid complex system: preparation, lymphatic transport, and pharmacokinetics. Drug Dev Ind Pharm 2020; 46:557-565. [PMID: 32126844 DOI: 10.1080/03639045.2020.1735408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Raloxifene hydrochloride (RH) suffers from low oral bioavailability due to its low water-solubility and first-pass metabolism. Therefore, a novel phospholipid complex of RH (RHPC) and a matrix dispersion based on phospholipid complex (RHPC-MD) were successfully prepared and optimized. Several methods were used to validate the formation of RHPC and RHPC-MD, such as differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, particle size, and zeta potential, meanwhile, their octanol-water partition coefficient, solubility, and dissolution in vitro were also evaluated. To investigate the absorption mechanism of RHPC in vivo, the RHPC was administered to the chylomicron flow blockage rat model. Interestingly, as we expected, a significant reduction in RHPC absorption (67%) (**p< .01) in presence of cycloheximide (CXI) inhibitor was observed, thus confirming the RHPC could be absorbed by lymphatic transport in vivo. Pharmacokinetic studies revealed that the relative oral bioavailability of RHPC as well as RHPC-MD was 223% and 329%, respectively, when comparing with the commercial RH tablets. These outcomes suggested that the current study provided an attractive formulation to enhance the oral bioavailability of RH and stimulated to further research the absorption mechanism of RHPC in vivo.
Collapse
Affiliation(s)
- Huixin Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sirun Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiling Luo
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoting Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Suyan Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Izgelov D, Cherniakov I, Aldouby Bier G, Domb AJ, Hoffman A. The Effect of Piperine Pro-Nano Lipospheres on Direct Intestinal Phase II Metabolism: The Raloxifene Paradigm of Enhanced Oral Bioavailability. Mol Pharm 2018. [PMID: 29537855 DOI: 10.1021/acs.molpharmaceut.7b01090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phase II biotransformation reactions have been gaining more attention due to their acknowledged significance in drug bioavailability, drug development, and drug-drug interactions. However, the predominant role of phase I metabolism has always overshadowed phase II metabolism, resulting in insufficient data regarding its mechanisms. In this paper, we investigate the effect of an advanced lipid based formulation on the phase II metabolism process of glucuronidation, occuring in the enterocytes monolayer. The investigated formulation is a self-emulsifying drug delivery system, termed pro-nano lipospheres, which contains the natural absorption enhancer piperine. To evaluate the effect of this formulation on direct glucuronidation we chose the model molecule raloxifene. First, glucuronidation is the main clearance pathway of this compound without involvement of preceding mechanisms. Second, raloxifene's extensive glucuronidation site is primarily at the intestine. Raloxifene's oral bioavailability was determined in a series of pharmacokinetic experiments using the freely moving rat model. In order to test the effect of the formulation on the relevant UGT enzymes reported in the clinic, we used the in vitro method of UGT-Glo Assay. Coadministration of raloxifene and piperine pro-nano lipospheres to rats resulted in a 2-fold increase in the relative oral bioavailability of raloxifene. However, coadministration of raloxifene with blank pro-nano lipospheres had no effect on its oral bioavailability. In contrast to the difference found in vivo between the two vehicles, both formulations extended an inhibitory effect on UGT enzymes in vitro. Ultimately, these findings prove the ability of the formulation to diminish intestinal direct phase II metabolism which serves as an absorption obstacle for many of today's marketed drugs. Pro-nano lipospheres is a formulation that serves as a platform for the simultaneous delivery of the absorption enhancer and a required drug. The discrepancy found between the in vivo and in vitro models demonstrates that the in vitro method may not be sensitive enough to distinguish the difference between the formulations.
Collapse
Affiliation(s)
- Dvora Izgelov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Irina Cherniakov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Gefen Aldouby Bier
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| |
Collapse
|
7
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
8
|
Aditya N, Ravi PR, Avula USR, Vats R. Poly (ε-caprolactone) nanocapsules for oral delivery of raloxifene: process optimization by hybrid design approach, in vitro and in vivo evaluation. J Microencapsul 2014; 31:508-18. [PMID: 24697167 DOI: 10.3109/02652048.2014.885603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raloxifene HCl (RLX), a selective oestrogen receptor modulator, has low oral bioavailability (<2%) in humans due to its poor aqueous solubility and extensive first-pass metabolism in gut. In this study, we optimised the method of preparation for poly (ε-caprolactone) (PCL) based nanocapsules of RLX by double emulsion method (w/o/w). A hybrid design approach, Plackett-Burman design followed by rotatable central composite design, was used to arrive at the optimised formulation. The optimised formulation was subjected to in vitro and in vivo evaluation. RLX loaded nanocapsules were spherical in shape with particle size less than 200 nm and high encapsulation efficiency (>80%). RLX-loaded nanocapsules showed 2.1-fold increase in oral bioavailability compared to free RLX. IV pharmacokinetic studies indicated that RLX loaded into nanocapsule had significantly low clearance in comparison with free RLX. Designed nanocapsules showed promise as delivery systems to enhance oral bioavailability and in reducing clearance of raloxifene.
Collapse
Affiliation(s)
- N Aditya
- Department of Pharmacy, BITS-Pilani Hyderabad Campus , Hyderabad, Andhra Pradesh , India
| | | | | | | |
Collapse
|
9
|
Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm 2013; 87:114-24. [PMID: 24378615 DOI: 10.1016/j.ejpb.2013.12.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/08/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022]
Abstract
Raloxifene HCl (RLX) shows low oral bioavailability (<2%) in humans due to poor aqueous solubility and extensive (>90%) metabolism in gut. Lipid nanoparticles (SLN) with glyceryl tribehenate were designed to enhance drug's oral bioavailability. Box-Bhenken design was used to optimize manufacturing conditions. Optimized SLN had particle size of 167±3nm and high encapsulation efficiency (>92%). Oral bioavailability of RLX from SLN was improved by 3.24 folds compared to free RLX in female Wistar rats. Both clathrin and caveolae mediated endocytosis pathways were involved in the uptake of SLN. Lymphatic transport inhibitor, cycloheximide significantly reduced oral bioavailability of SLN.
Collapse
Affiliation(s)
- Punna Rao Ravi
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Jawaharnagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - N Aditya
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Jawaharnagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - Himanshu Kathuria
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Jawaharnagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - Srinivas Malekar
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Jawaharnagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - Rahul Vats
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Jawaharnagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| |
Collapse
|
10
|
Lundahl A, Tevell Åberg A, Bondesson U, Lennernäs H, Hedeland M. High-resolution mass spectrometric investigation of the phase I and II metabolites of finasteride in pig plasma, urine and bile. Xenobiotica 2013; 44:498-510. [DOI: 10.3109/00498254.2013.866298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Lilienberg E, Ebeling Barbier C, Nyman R, Hedeland M, Bondesson U, Axén N, Lennernäs H. Investigation of hepatobiliary disposition of doxorubicin following intrahepatic delivery of different dosage forms. Mol Pharm 2013; 11:131-44. [PMID: 24171458 DOI: 10.1021/mp4002574] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unresectable, intermediate stage hepatocellular carcinoma (HCC) is often treated palliatively in humans by doxorubicin (DOX). The drug is administered either as a drug-emulsified-in-Lipiodol (DLIP) or as drug loaded into drug eluting beads (DEB), and both formulations are administered intrahepatically. However, several aspects of their in vivo performance in the liver are still not well-understood. In this study, DLIP and DEB were investigated regarding the local and systemic pharmacokinetics (PK) of DOX and its primary metabolite doxorubicinol (DOXol). An advanced PK-multisampling site acute in vivo pig model was used for simultaneous sampling in the portal, hepatic, and femoral veins and the bile duct. The study had a randomized, parallel design with four treatment groups (TI-TIV). TI (n = 4) was used as control and received an intravenous (i.v.) infusion of DOX as a solution. TII and TIII were given a local injection in the hepatic artery with DLIP (n = 4) or DEB (n = 4), respectively. TIV (n = 2) received local injections of DLIP in the hepatic artery and bile duct simultaneously. All samples were analyzed for concentrations of DOX and DOXol with UPLC-MS/MS. Compared to DLIP, the systemic exposure for DOX with DEB was reduced (p < 0.05), in agreement with a slower in vivo release. The approximated intracellular bioavailability of DOX during 6 h appeared to be lower for DEB than DLIP. Following i.v. infusion (55 min), DOX had a liver extraction of 41 (28-53)%, and the fraction of the dose eliminated in bile of DOX and DOXol was 20 (15-22)% and 4.2 (3.2-5.2)%, respectively. The AUCbile/AUCVP for DOX and DOXol was 640 (580-660) and 5000 (3900-5400), respectively. In conclusion, DLIP might initially deliver a higher hepatocellular concentration of DOX than DEB as a consequence of its higher in vivo release rate. Thus, DLIP delivery results in higher intracellular peak concentrations that might correlate with better anticancer effects, but also higher systemic drug exposure and safety issues.
Collapse
Affiliation(s)
- Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
A Physiologically Based Pharmacokinetic Model of the Minipig: Data Compilation and Model Implementation. Pharm Res 2012. [DOI: 10.1007/s11095-012-0911-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|