1
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110704. [PMID: 36091591 PMCID: PMC9451982 DOI: 10.1155/2022/9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW. Methods 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms. Results (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our in vitro experiments confirmed that the JW treatment suppressed caspase3-dependent pyroptosis, hypoxia-inducible factor 1α (HIF1α), and interleukin-1b (IL-1b) in the colon; facilitated the alternative activation of macrophages (Mφs); and inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs). Conclusion The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
Collapse
|
3
|
A curated binary pattern multitarget dataset of focused ATP-binding cassette transporter inhibitors. Sci Data 2022; 9:446. [PMID: 35882865 PMCID: PMC9325750 DOI: 10.1038/s41597-022-01506-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool ‘computer-aided pattern analysis’ (‘C@PA’). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics. Measurement(s) | Influx • Efflux • Tracer • Transport velocity | Technology Type(s) | Fluorometry • Radioactivity • Plate reader • Flow cytometer • Tracer distribution | Factor Type(s) | half-maximal inhibition concentration | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | cell culture | Sample Characteristic - Location | Kingdom of Norway • Germany • Australia • Latvia |
Collapse
|
4
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 2021; 459:152853. [PMID: 34252480 DOI: 10.1016/j.tox.2021.152853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yaodong Yi
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Liping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Feifeng Song
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shixin Ni
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Xiao W, Deng Z, Lai C, Lu H, Huang M, Wen Y, Shi L. Inhibitory effect of ketoconazole, quinidine and 1-aminobenzotriazole on pharmacokinetics of l-tetrahydropalmatine and its metabolite in rats. Xenobiotica 2021; 51:447-454. [PMID: 33347343 DOI: 10.1080/00498254.2020.1867928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
l-tetrahydropalmatine (l-THP) is mainly metabolised by CYP450 enzymes.This study was to investigate the possible effect of co-administered CYP inhibitors on the pharmacokinetics of l-THP and its metabolites in rats.An established LC-MS/MS method has been applied for the evaluation of drug-drug interaction between l-THP and CYP inhibitors. Following the administration of CYP inhibitors, a single dose of l-THP (9 mg/kg) was orally administrated.With regard to l-THP, the AUC0-48 were significantly increased by 4.3, 3.79, and 11.39 folds, and Cmax were increased by 4.74, 3.64, and 2.76 folds in the ketoconazole group (KET), quinidine group (QD), and 1-aminobenzotriazole group (ABT), respectively. KET and QD both significantly increased the AUC0-48 of 2-DM and 2-DM-Glu by 1.38 ∼ 2.43 times, while Cmax was significantly decreased by 41.3 and 78.0% in the ABT group, respectively. The Cmax of 3-DM was reduced by 51.38, 48.02, and 63.31% after pre-treatment with KET, QD, and ABT, respectively, and Cmax of 3-DM-Glu decreased correspondingly by 29.6, 22.1, and 58.0%.Results indicated that CYP inhibitors could markedly influence the systemic level of l-THP and its metabolites. To guarantee the safe use of l-THP, attention should be paid when l-THP was co-administered with CYP inhibitors, particularly with CYP3A4 and 2D6 inhibitors.
Collapse
Affiliation(s)
- Weibin Xiao
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhirong Deng
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chongfa Lai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haoyang Lu
- Affiliated Brain Hospital, Guangzhou Medical University Guangzhou Hospital, Guangzhou, China
| | - Mutu Huang
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yuguan Wen
- Affiliated Brain Hospital, Guangzhou Medical University Guangzhou Hospital, Guangzhou, China
| | - Lei Shi
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
7
|
Chen Y, Li C, Yi Y, Du W, Jiang H, Zeng S, Zhou H. Organic Cation Transporter 1 and 3 Contribute to the High Accumulation of Dehydrocorydaline in the Heart. Drug Metab Dispos 2020; 48:1074-1083. [PMID: 32723846 DOI: 10.1124/dmd.120.000025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dehydrocorydaline (DHC), one of the main active components of Corydalis yanhusuo, is an important remedy for the treatment of coronary heart disease. Our previous study revealed a higher unbound concentration of DHC in the heart than plasma of mice after oral administration of C. yanhusuo extract or DHC, but the underlying uptake mechanism remains unelucidated. In our investigations, we studied the transport mechanism of DHC in transgenic cells, primary neonatal rat cardiomyocytes, and animal experiments. Using quantitative real-time polymerase chain reaction and Western blotting, we found that uptake transporters expressed in the mouse heart include organic cation transporter 1/3 (OCT1/3) and carnitine/organic cation transporter 1/2 (OCTN1/2). The accumulation experiments in transfected cells showed that DHC was a substrate of OCT1 and OCT3, with K m of 11.29 ± 3.3 and 8.96 ± 3.7 μM, respectively, but not a substrate of OCTN1/2. Additionally, a higher efflux level (1.71-fold of MDCK-mock) of DHC was observed in MDCK-MDR1 cells than in MDCK-mock cells. Therefore, DHC is a weak substrate for MDR1. Studies using primary neonatal rat cardiomyocytes showed that OCT1/3 inhibitors (quinidine, decynium-22, and levo-tetrahydropalmatine) prevented the accumulation of DHC, whereas OCTN2 inhibitors (mildronate and l-carnitine) did not affect its accumulation. Moreover, the coadministration of OCT1/3 inhibitors (levo-tetrahydropalmatine, THP) decreased the concentration of DHC in the mouse heart. Based on these findings, DHC may be accumulated partly by OCT1/3 transporters and excreted by MDR1 in the heart. THP could alter the distribution of DHC in the mouse heart. SIGNIFICANCE STATEMENT: We reported the cardiac transport mechanism of dehydrocorydaline, highly distributed to the heart after oral administration of Corydalis yanhusuo extract or dehydrocorydaline only. Dehydrocorydaline (an OCT1/3 and MDR1 substrate) accumulation in primary cardiomyocytes may be related to the transport activity of OCT1/3. This ability, hampered by selective inhibitors (levo-tetrahydropalmatine, an inhibitor of OCT1/3), causes a nearly 40% reduction in exposure of the heart to dehydrocorydaline. These results suggest that OCT1/3 may contribute to the uptake of dehydrocorydaline in the heart.
Collapse
Affiliation(s)
- Yingchun Chen
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cui Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Weijuan Du
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
L-tetrahydropalmatine attenuates cisplatin-induced nephrotoxicity via selective inhibition of organic cation transporter 2 without impairing its antitumor efficacy. Biochem Pharmacol 2020; 177:114021. [DOI: 10.1016/j.bcp.2020.114021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022]
|
9
|
Le J, Lin Z, Song L, Wang H, Hong Z. LC-MS/MS combined with in vivo microdialysis sampling from conscious rat striatum for simultaneous determination of active constituents of Yuanhu- Baizhi herb pair and endogenous neurotransmitters: Application to pharmacokinetic and pharmacodynamic study. J Pharm Biomed Anal 2019; 176:112807. [DOI: 10.1016/j.jpba.2019.112807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
|
10
|
Zeng Q, Bai M, Li C, Lu S, Ma Z, Zhao Y, Zhou H, Jiang H, Sun D, Zheng C. Multiple Drug Transporters Contribute to the Placental Transfer of Emtricitabine. Antimicrob Agents Chemother 2019; 63:e00199-19. [PMID: 31160284 PMCID: PMC6658773 DOI: 10.1128/aac.00199-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.
Collapse
Affiliation(s)
- Qingquan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cui Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghui Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongli Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caihong Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Mon MT, Yodkeeree S, Punfa W, Pompimon W, Limtrakul P. Alkaloids from Stephania venosa as Chemo-Sensitizers in SKOV3 Ovarian Cancer Cells via Akt/NF-κB Signaling. Chem Pharm Bull (Tokyo) 2018; 66:162-169. [PMID: 29386467 DOI: 10.1248/cpb.c17-00687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crebanine (CN), tetrahydropalmatine (THP), O-methylbulbocapnine (OMBC) and N-methyl tetrahydropalmatine (NMTHP) are isoquinoline derived natural alkaloids isolated from tubers of Stephania venosa. We investigated chemo-sensitizing effects of these alkaloids in ovarian cancer cells and evaluated underlying molecular mechanisms involved in chemo-sensitivity. Detection of cell apoptosis was evaluated by using flow cytometry. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chou-Talalay median effect principle was used to evaluate potential drug interactions. Protein analyses were performed on ovarian carcinoma cells using Western blotting upon treatment with anticancer drug and alkaloids. Aporphine alkaloids, such as CN and OMBC, enhanced cisplatin sensitivity in intrinsic cisplatin resistant SKOV3 cells, but not in cisplatin sensitive A2780 cells. Protoberberine alkaloids, such as THP and NMTHP, had no synergistic effect on cisplatin sensitivity in either cell line. Chemo-sensitizing effects of CN and OMBC in SKOV3 cells were mediated via activating apoptosis-induced cell death through caspase-3, -8 and cleaved poly ADP-ribose polymerase (PARP) and via inhibiting anti-apopotic and survival protein expression, such as Bcl-xL, Baculoviral IAP repeat-containing protein 3 (cIAP-2), survivin and interleukin (IL) -6. Cisplatin stimulated protein kinase B (Akt) and nuclear factor-kappaB (NF-κB) signaling pathways, but not mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) in SKOV3 cells. Akt/NF-κB signaling was blocked by CN and OMBC leading to increased sensitization to cisplatin. These findings demonstrate that CN and OMBC sensitizes SKOV3 cells to cisplatin via inhibition of Akt/NF-κB signaling and the down regulation of NF-κB mediated gene products. Our results suggest that alkaloids obtained from S. venosa could be used as chemo-sensitizers in ovarian cancer to sensitize and minimize the dose related toxicity of platinum-based chemotherapeutic drugs.
Collapse
Affiliation(s)
- May Thuu Mon
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Department of Biochemistry, University of Medicine-2
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wanisa Punfa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wilart Pompimon
- Laboratory of Natural Products, Department of Chemistry, Faculty of Science, Lampang Rajabhat University
| | - Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| |
Collapse
|
12
|
Multiple Drug Transporters Are Involved in Renal Secretion of Entecavir. Antimicrob Agents Chemother 2016; 60:6260-70. [PMID: 27503646 DOI: 10.1128/aac.00986-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/31/2016] [Indexed: 12/17/2022] Open
Abstract
Entecavir (ETV) is a first-line antiviral agent for the treatment of chronic hepatitis B virus infection. Renal excretion is the major elimination path of ETV, in which tubular secretion plays the key role. However, the secretion mechanism has not been clarified. We speculated that renal transporters mediated the secretion of ETV. Therefore, the aim of our study was to elucidate which transporters contribute to the renal disposition of ETV. Our results revealed that ETV (50 μM) remarkably reduced the accumulation of probe substrates in MDCK cells stably expressing human multidrug and toxin efflux extrusion proteins (hMATE1/2-K), organic cation transporter 2 (hOCT2), and carnitine/organic cation transporters (hOCTNs) and increased the substrate accumulation in cells transfected with multidrug resistance-associated protein 2 (hMRP2) or multidrug resistance protein 1 (hMDR1). Moreover, ETV was proved to be a substrate of the above-described transporters. In transwell studies, the transport of ETV in MDCK-hOCT2-hMATE1 showed a distinct directionality from BL (hOCT2) to AP (hMATE1), and the cellular accumulation of ETV in cells expressing hMATE1 was dramatically lower than that of the mock-treated cells. The accumulation of ETV in mouse primary renal tubular cells was obviously affected by inhibitors of organic anion transporter 1/3 (Oat1/3), Oct2, Octn1/2, and Mrp2. Therefore, the renal uptake of ETV is likely mediated by OAT1/3 and OCT2 while the efflux is mediated by MATEs, MDR1, and MRP2, and OCTN1/2 may participate in both renal secretion and reabsorption.
Collapse
|
13
|
Zhao Y, Liang A, Zhang Y, Li C, Yi Y, Nilsen OG. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs. Phytother Res 2016; 30:906-14. [DOI: 10.1002/ptr.5608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Zhao
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Aihua Liang
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Yushi Zhang
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Chunying Li
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Yan Yi
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Odd Georg Nilsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| |
Collapse
|
14
|
Du GH, Yuan TY, Du LD, Zhang YX. The Potential of Traditional Chinese Medicine in the Treatment and Modulation of Pain. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:325-61. [DOI: 10.1016/bs.apha.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Xue M, Liu ML, Zhu XY, Shi DAZ, Yin HJ. Effective components of Panax quinquefolius and Corydalis tuber protect the myocardium by inhibiting platelet activation and improving the hypercoagulable state. Exp Ther Med 2015; 9:1477-1481. [PMID: 25780455 PMCID: PMC4353745 DOI: 10.3892/etm.2015.2271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effects of extract of Panax quinquefolius and Corydalis tuber (EPC) on platelet activation and the hypercoagulable state in rats with acute myocardial infarction (AMI). The MI model in Wistar rats was induced by coronary artery ligation. Sham surgery was performed as a control. The surviving rats that underwent MI surgery were divided into control (administered normal saline), metoprolol (9 mg/kg) and low-, moderate- and high-dose EPC groups (0.54, 1.08 g/kg and 2.16 g/kg, respectively). Saline, metoprolol and EPC were administered by gastrogavage for two consecutive weeks. The morphological changes of the myocardium were assessed by hematoxylin and eosin and nitroblue tetrazolium staining. Serum von Willebrand factor (vWF), D-dimer (DD), platelet membrane glycoproteins IIb-IIIa (GPIIb-IIIa) and CD62P levels were assessed using enzyme-linked immunosorbent assay. EPC attenuated the pathological changes of the myocardium. High-dose EPC decreased the serum concentration of vWF when compared with control group. Moderate and high doses of EPC decreased the DD and GPIIb-IIIa levels, and the CD62P level was gradually decreased with EPC dose escalation. The results therefore demonstrated that EPC protects the myocardium by inhibiting platelet activation and improving the hypercoagulable state in a rat model of AMI.
Collapse
Affiliation(s)
- Mei Xue
- Cardiovascular Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing 100091, P.R. China
| | - Mei-Lin Liu
- Department of Geriatric Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xin-Yuan Zhu
- Department of Geriatric Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - DA-Zhuo Shi
- Cardiovascular Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing 100091, P.R. China
| | - Hui-Jun Yin
- Cardiovascular Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing 100091, P.R. China
| |
Collapse
|
16
|
Zhao Y, Hellum BH, Liang A, Nilsen OG. Inhibitory Mechanisms of Human CYPs by Three Alkaloids Isolated from Traditional Chinese Herbs. Phytother Res 2015; 29:825-34. [DOI: 10.1002/ptr.5285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yong Zhao
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Bent Håvard Hellum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Aihua Liang
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Odd Georg Nilsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| |
Collapse
|
17
|
Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, Wu C, Jiang J. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells 2014; 37:812-8. [PMID: 25377255 PMCID: PMC4255101 DOI: 10.14348/molcells.2014.0210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/18/2022] Open
Abstract
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Changqing Lu
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Jun Xie
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Tongbing Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Yan Tan
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003,
P.R. China
| |
Collapse
|
18
|
Cyclosporin A affects the bioavailability of ginkgolic acids via inhibition of P-gp and BCRP. Eur J Pharm Biopharm 2014; 88:759-67. [DOI: 10.1016/j.ejpb.2014.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
|
19
|
Desgrouas C, Taudon N, Bun SS, Baghdikian B, Bory S, Parzy D, Ollivier E. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:537-563. [PMID: 24768769 DOI: 10.1016/j.jep.2014.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. AIM OF THE REVIEW To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. MATERIAL AND METHODS Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. RESULTS The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. CONCLUSION Stephania rotunda is traditionally used for the treatment of a wide range of ailments. Pharmacological investigations have validated different uses of Stephania rotunda in folk medicine. The present review highlights the three most promising compounds of Stephania rotunda, which could constitute potential leads in various medicinal fields, including malaria and cancer.
Collapse
Affiliation(s)
- Camille Desgrouas
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France; UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | | | - Sok-Siya Bun
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Beatrice Baghdikian
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Sothavireak Bory
- Faculté de Pharmacie, Université des Sciences de la Santé, no. 73, Monivong Blvd, Daun Penh, Phnom Penh, Cambodia.
| | - Daniel Parzy
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Evelyne Ollivier
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| |
Collapse
|
20
|
Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One 2014; 9:e98887. [PMID: 24887182 PMCID: PMC4041784 DOI: 10.1371/journal.pone.0098887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5-20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5-7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor.
Collapse
|
21
|
Zhou Q, Yu LS, Zeng S. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction. Drug Metab Rev 2014; 46:283-90. [PMID: 24796860 DOI: 10.3109/03602532.2014.887094] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang Province , China and
| | | | | |
Collapse
|
22
|
Tu M, Li L, Lei H, Ma Z, Chen Z, Sun S, Xu S, Zhou H, Zeng S, Jiang H. Involvement of organic cation transporter 1 and CYP3A4 in retrorsine-induced toxicity. Toxicology 2014; 322:34-42. [PMID: 24799337 DOI: 10.1016/j.tox.2014.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 01/11/2023]
Abstract
Retrorsine (RTS) is a hepatotoxic pyrrolizidine alkaloid present in plants of the Senecio genus. The present study is aimed at clarifying the role of organic cation transporters (OCTs) in the liver disposition of RTS, and the coupling of OCT1 and cytochrome P450 (CYP) 3A4 in the hepatotoxicity of RTS. MDCK or LLC-PK1 cells stably expressing liver uptake or efflux transporters were used to investigate the interaction of RTS with these transporters. Primary cultured rat hepatocytes (PCRH) and double-transfected MDCK-hOCT1-CYP3A4 cells were used to determine the contribution of OCT1 and CYP3A4 to the toxicity of RTS. The results showed that RTS inhibited the OCT1-mediated 1-methyl-4-phenylpyridinium (MPP(+)) uptake in MDCK-hOCT1 cells with the IC50 of 2.25±0.30μM. The uptake of RTS in MDCK-hOCT1 cells and PCRH was significantly inhibited by OCT1 inhibitors, while hOCT3, human multidrug and toxin extrusion (hMATE) transporter 1, multidrug resistance 1 (MDR1), and breast cancer resistance protein (BCRP) showed weak or no obvious interaction with RTS. The toxic effect of RTS on the PCRH was attenuated by OCT1 inhibitors, quinidine and (+)-tetrahydropalmatine ((+)-THP). Compared to mock cells, MDCK-CYP3A4 cells showed a decrease in viability after being treated with RTS. Furthermore, RTS showed a more severe toxicity in the OCT1/CYP3A4 double-transfected cells compared to all other cells. Our data suggests that OCT1 mediates the liver-specific uptake of RTS, and plays an important role in RTS-induced hepatotoxicity together with CYP3A4. Consequently, the OCT1 inhibitors could be applied to protect the liver from the toxicity of RTS.
Collapse
Affiliation(s)
- Meijuan Tu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongmei Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyuan Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siyuan Sun
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Siyun Xu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Yu L, Shen Q, Zhou Q, Jiang H, Bi H, Huang M, Zhou H, Zeng S. In vitro characterization of ABC transporters involved in the absorption and distribution of liensinine and its analogs. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:485-91. [PMID: 24036064 DOI: 10.1016/j.jep.2013.08.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/14/2013] [Accepted: 08/29/2013] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lotus plumule, the dried young cotyledon and radicle of the Nelumbo nucifera Gaertn. (Fam. Nymphaeaceae) ripe seed, is a famous Traditional Chinese Medicine to remove heat from the heart, anchor the mind, improve seminal emission, and arrest bleeding for centuries in China. Liensinine and its analogs neferine and isoliensinine are the major active components in lotus plumule. Aim of the study is to investigate the association of liensinine, neferine, and isoliensinine with efflux transporters. MATERIALS AND METHODS Caco-2, MDCK, MDCK-MDR1, and MDCK-MRP2 were used as cell models for the transcellular transport and accumulation studies. RESULTS The results obtained in Caco-2 cells suggested that P-glycoprotein (P-gp) might be involved in transcellular transport. Cellular accumulation and transport experiments were further performed in MDCK-MDR1 cells. GF120918 and cyclosporine A were found to completely inhibit the efflux, and the net efflux ratios of these alkaloids exhibited saturation over the concentration range. No significant differences in liensinine accumulation and transport were observed between MDCK and MDCK-MRP2 cells. CONCLUSIONS These results demonstrated that liensinine, neferine, and isoliensinine are substrates of P-gp, whereas MRP2 is not involved in the transport process, suggesting that P-gp might be responsible for the absorption and distribution of the 3 alkaloids.
Collapse
Affiliation(s)
- Lushan Yu
- Laboratory of Pharmaceutical of Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yodkeeree S, Wongsirisin P, Pompimon W, Limtrakul P. Anti-invasion effect of crebanine and O-methylbulbocapnine from Stephania venosa via down-regulated matrix metalloproteinases and urokinase plasminogen activator. Chem Pharm Bull (Tokyo) 2013; 61:1156-65. [PMID: 23985774 DOI: 10.1248/cpb.c13-00584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alkaloids isolated from Stephania venosa (S. venosa) have been shown to inhibit the proliferation and to induce the apoptosis of cancer cells. However, the anti-metastatic effect of the alkaloids on cancer cell invasion is unknown. In this study, we investigated the anti-invasive properties of four alkaloids from S. venosa, crebanine (CN), O-methylbulbocapnine (OMBC), tetrahydropalmatine (THP), and N-methyltetrahydropalmatine (NMTHP), in HT1080 human fibrosacroma cells. Treatment of the cells with 15 µg/mL of CN and OMBC reduced the chemo-invasion of HT1080 cells to 45 and 50%, respectively, whereas THP and NMTHP had a negative effect. On the other hand, CN and OMBC had no effect on cell migration. Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) are the extracellular matrix (ECM) degradation enzymes that play an important role in cancer cell metastasis. Results from zymography and western blot analysis showed that CN and OMBC comparatively reduced MMP-2, MMP-9, MT1-MMP and uPA expression in a dose-dependent manner. However, CN and OMBC had no effect on the activity of collagenase, MMP-2 and MMP-9. We also found that CN and OMBC reduced the nuclear translocation and DNA binding activity of nuclear factor kappa B (NF-κB), which is the expressed mediator of ECM degradation enzymes. These findings demonstrated that CN and OMBC mediated HT1080 cell invasion by the reduction of MMP-2, MMP-9, uPA and MT1-MMP expression, possibly by targeting of NF-κB signaling pathway in the HT1080 cells.
Collapse
|
25
|
Design, synthesis and evaluation of 3-(2-aminoheterocycle)-4-benzyloxyphenylbenzamide derivatives as BACE-1 inhibitors. Molecules 2013; 18:3577-94. [PMID: 23519200 PMCID: PMC6269915 DOI: 10.3390/molecules18033577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/16/2022] Open
Abstract
Three series of 3-(2-aminoheterocycle)-4-benzyloxyphenylbenzamide derivatives, 2-aminooxazoles, 2-aminothiazoles, and 2-amino-6H-1,3,4-thiadizines were designed, synthesized and evaluated as β-secretase (BACE-1) inhibitors. Preliminary structure-activity relationships revealed that the existence of a 2-amino-6H-1,3,4-thiadizine moiety and α-naphthyl group were favorable for BACE-1 inhibition. Among the synthesized compounds, 5e exhibited the most potent BACE-1 inhibitory activity, with an IC50 value of 9.9 μΜ and it exhibited high brain uptake potential in Madin-Darby anine kidney cell lines (MDCK) and a Madin-Darby canine kidney-multidrug resistance 1 (MDCK-MDR1) model.
Collapse
|