1
|
Grañana-Castillo S, Williams A, Pham T, Khoo S, Hodge D, Akpan A, Bearon R, Siccardi M. General Framework to Quantitatively Predict Pharmacokinetic Induction Drug-Drug Interactions Using In Vitro Data. Clin Pharmacokinet 2023; 62:737-748. [PMID: 36991285 DOI: 10.1007/s40262-023-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug-drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes. METHODS The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer. RESULTS Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs. CONCLUSION This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.
Collapse
Affiliation(s)
| | - Angharad Williams
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Thao Pham
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Daryl Hodge
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospitals NHS FT, Liverpool, UK
- NIHR Clinical Research Network, Northwest Coast, Liverpool, UK
| | - Rachel Bearon
- Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
2
|
Qu W, Crizer DM, DeVito MJ, Waidyanatha S, Xia M, Houck K, Ferguson SS. Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicol In Vitro 2021; 73:105109. [PMID: 33609632 PMCID: PMC10838150 DOI: 10.1016/j.tiv.2021.105109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The Tox21 Program has investigated thousands of chemicals with high-throughput screening assays using cell-based assays to link thousands of chemicals to individual molecular targets/pathways. However, these systems have been widely criticized for their suspected lack of 'metabolic competence' to bioactivate or detoxify chemical exposures. In this study, 9 cell line backgrounds used in Tox21 assays (i.e., HepG2, HEK293, Hela, HCT116, ME180, CHO-K1, GH3.TRE-Luc, C3H10T1/2 and MCF7) were evaluated via metabolite formation rates, along with metabolic clearance and metabolite profiling for HepG2, HEK293, and MCF-7aroERE, in comparison to pooled donor (50) suspensions of primary human hepatocytes (PHHs). Using prototype clinical drug substrates for CYP1A2, CYP2B6, and CYP3A4/5, extremely low-to-undetectable CYP450 metabolism was observed (24 h), and consistent with their purported 'lack' of metabolic competence. However, for Phase II metabolizing enzymes and metabolic clearance, surprisingly proficient metabolism was observed for bisphenol AF, bisphenol S, and 7-hydroxycoumarin. Here, comparatively low glucuronidation relative to sulfation was observed in contrast to equivalent levels in PHHs. Overall, while a lack of CYP450 metabolism was confirmed in this benchmarking effort, Tox21 cell lines were not 'incompetent' for xenobiotic metabolism, and displayed surprisingly high proficiency for sulfation that rivaled PHHs. These findings have implications for the interpretation of Tox21 assay data, and establish a framework for evaluating of 'metabolic competence' with in vitro models.
Collapse
Affiliation(s)
- Wei Qu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Crizer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael J DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Keith Houck
- National Center for Computational Toxicology, US EPA, Research Triangle Park, NC, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
4
|
Cuypers ML, Chanteux H, Gillent E, Bonnaillie P, Saunders K, Beckers C, Delatour C, Dell'Aiera S, Ungell AL, Nicolaï J. (-)- N-3-Benzylphenobarbital Is Superior to Omeprazole and (+)- N-3-Benzylnirvanol as a CYP2C19 Inhibitor in Suspended Human Hepatocytes. Drug Metab Dispos 2020; 48:1121-1128. [PMID: 32839278 DOI: 10.1124/dmd.120.000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Early assessment of metabolism pathways of new chemical entities guides the understanding of drug-drug interactions. Selective enzyme inhibitors are indispensable in CYP reaction phenotyping. The most commonly applied CYP2C19 inhibitor, omeprazole, lacks selectivity. Two promising alternatives, (+)-N-3-benzylnirvanol and (-)-N-3-benzylphenobarbital, are already used as CYP2C19 inhibitors in some in vitro studies with suspended human hepatocytes. However, a full validation proving their suitability in terms of CYP and non-CYP selectivity has not been presented in literature. The present study provides a thorough comparison between omeprazole, (+)-N-3-benzylnirvanol, and (-)-N-3-benzylphenobarbital in terms of potency and selectivity and shows the superiority of (-)-N-3-benzylphenobarbital as a CYP2C19 inhibitor in suspended human hepatocytes. Furthermore, we evaluated the application of (-)-N-3-benzylphenobarbital to predict the in vivo contribution of CYP2C19 to drug metabolism [fraction metabolized (fm) of CYP2C19, fmCYP2C19]. A set of 10 clinically used CYP2C19 substrates with reported in vivo fmCYP2C19 data was evaluated. fmCYP2C19, which was predicted using data from suspended human hepatocyte incubations, underestimated the in vivo fmCYP2C19 The use of a different hepatocyte batch with a different CYP3A4/CYP2C19 activity ratio showed the impact of intrinsic CYP activities on the determination of fmCYP2C19 Overall, this study confirms the selective CYP2C19 inhibition by (-)-N-3-benzylphenobarbital over other CYP isoforms (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2D6, and CYP3A4) and clinically relevant non-CYP enzymes [aldehyde oxidase, flavin-containing monooxygenase 3, N-acetyltransferase 2, uridine diphosphate glucuronosyltransferase (UGT) 1A1, UGT1A4, UGT2B7, UGT2B15] in suspended human hepatocytes. (-)-N-3-benzylphenobarbital is therefore the preferred CYP2C19 inhibitor to assess fmCYP2C19 in suspended human hepatocytes in comparison with omeprazole and (+)-N-3-benzylnirvanol. SIGNIFICANCE STATEMENT: (-)-N-3-Benzylphenobarbital is a more potent and selective inhibitor of CYP2C19 in suspended human hepatocytes than omeprazole and (+)-N-3-benzylnirvanol. (-)-N-3-Benzylphenobarbital can be used to predict the fraction metabolized by CYP2C19 in suspended human hepatocytes.
Collapse
Affiliation(s)
- Marie-Lynn Cuypers
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Hugues Chanteux
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Eric Gillent
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Pierre Bonnaillie
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Kenneth Saunders
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Claire Beckers
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Claude Delatour
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Sylvie Dell'Aiera
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Anna-Lena Ungell
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Johan Nicolaï
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| |
Collapse
|
5
|
Chanteux H, Rosa M, Delatour C, Nicolaï J, Gillent E, Dell'Aiera S, Ungell AL. Application of Azamulin to Determine the Contribution of CYP3A4/5 to Drug Metabolic Clearance Using Human Hepatocytes. Drug Metab Dispos 2020; 48:778-787. [PMID: 32532738 DOI: 10.1124/dmd.120.000017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022] Open
Abstract
Early determination of CYP3A4/5 contribution to the clearance of new chemical entities is critical to inform on the risk of drug-drug interactions with CYP3A inhibitors and inducers. Several in vitro approaches (recombinant P450 enzymes, correlation analysis, chemical and antibody inhibition in human liver microsomes) are available, but they are usually labor-intensive and/or suffer from specific limitations. In the present study, we have validated the use of azamulin as a specific CYP3A inhibitor in human hepatocytes. Azamulin (3 µM) was found to significantly inhibit CYP3A4/5 (>90%), whereas other P450 enzymes were not affected (less than 20% inhibition). Because human hepatocytes were used as a test system, the effect of azamulin on other key drug-metabolizing enzymes (aldehyde oxidase, carboxylesterase, UGT, flavin monooxygenase, and sulfotransferase) was also investigated. Apart from some UGTs showing minor inhibition (∼20%-30%), none of these non-P450 enzymes were inhibited by azamulin. Use of CYP3A5-genotyped human hepatocyte batches in combination with CYP3cide demonstrated that azamulin (at 3 µM) inhibits both CYP3A4 and CYP3A5 enzymes. Finally, 11 compounds with known in vivo CYP3A4/5 contribution have been evaluated in this human hepatocyte assay. Results showed that the effect of azamulin on the in vitro intrinsic clearance of these known CYP3A4/5 substrates was predictive of the in vivo CYP3A4/5 contribution. Overall, the study showed that human hepatocytes treated with azamulin provide a fast and accurate estimation of CYP3A4/5 contribution in metabolic clearance of new chemical entities. SIGNIFICANCE STATEMENT: Accurate estimation of CYP3A4/5 contribution in drug clearance is essential to anticipate risk of drug-drug interactions and select the appropriate candidate for clinical development. The present study validated the use of azamulin as selective CYP3A4/5 inhibitor in suspended human hepatocytes and demonstrated that this novel approach provides a direct and accurate determination of the contribution of CYP3A4/5 (fraction metabolized by CYP3A4/5) in the metabolic clearance of new chemical entities.
Collapse
Affiliation(s)
| | - Maria Rosa
- UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
He Y, Wei Z, Ci X, Xie Y, Yi X, Zeng Y, Li Y, Liu C. Effects of liquorice on pharmacokinetics of aconitine in rats. Xenobiotica 2019; 49:1485-1493. [DOI: 10.1080/00498254.2019.1579007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yufei He
- Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zihong Wei
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, PR China
| | - Xiaoyan Ci
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, PR China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, PR China
| | - Yong Zeng
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, PR China
| | - Yazhuo Li
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
- Tianjin Institute of Pharmaceutical Research, New Drug Assessment Co. Ltd, Tianjin, PR China
| | - Changxiao Liu
- Shenyang Pharmaceutical University, Shenyang, PR China
- State Key Laboratory of Drug Delivery Technologies and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
| |
Collapse
|
7
|
Qiu L, Li Q, Huang J, Wu Q, Tu K, Wu Y, Zhang X, Qian J, Zhang R, Li G, Sun M, Si L. In vitro effect of mPEG2k-PCLx micelles on rat liver cytochrome P450 enzymes. Int J Pharm 2018; 552:99-110. [PMID: 30253212 DOI: 10.1016/j.ijpharm.2018.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
|
8
|
den Braver-Sewradj SP, den Braver MW, Vermeulen NP, Commandeur JN, Richert L, Vos JC. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol In Vitro 2016; 33:71-9. [DOI: 10.1016/j.tiv.2016.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
9
|
Stockis A, Watanabe S, Scheen AJ, Tytgat D, Gerin B, Rosa M, Chanteux H, Nicolas JM. Effect of Rifampin on the Disposition of Brivaracetam in Human Subjects: Further Insights into Brivaracetam Hydrolysis. Drug Metab Dispos 2016; 44:792-9. [DOI: 10.1124/dmd.115.069161] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 01/07/2023] Open
|
10
|
Li AP. Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOC(TM)) System. Toxicol Res 2015; 31:137-49. [PMID: 26191380 PMCID: PMC4505344 DOI: 10.5487/tr.2015.31.2.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045
| |
Collapse
|
11
|
Cho YY, Jeong HU, Kim JH, Lee HS. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2137-45. [PMID: 25395831 PMCID: PMC4224024 DOI: 10.2147/dddt.s72305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1′-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hyeon-Uk Jeong
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
12
|
Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 2014; 69-70:158-69. [PMID: 24412641 DOI: 10.1016/j.addr.2013.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices present an opportunity to improve the drug development process. The devices have the potential to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices' capabilities can present unique opportunities for the study of drug action. We will also discuss challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion.
Collapse
|
13
|
Abstract
The accuracy of preclinical safety evaluation to predict human toxicity is hindered by species difference in drug metabolism and toxic mechanism between human and nonhuman animals. In vitro human-based experimental systems allowing the assessment of human-specific drug properties represent a logical and practical approach to provide human-specific information. An advantage of in vitro approaches is that they require only limited amounts of time and resources, and, most importantly, do not invoke harm to human patients. Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent a practical and useful experimental system to assess drug metabolism. The use of human hepatocytes to evaluate two major adverse drug properties, drug–drug interactions and hepatotoxicity, are reviewed. The application of human hepatocytes in metabolism-based drug–drug interactions includes metabolite profiling, pathway identification, CYP450 inhibition, CYP450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. Correlation of drug toxicity with proteomics and genomics data may allow the discovery of clinical biomarkers for early detection of liver toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045, USA
| |
Collapse
|