1
|
RTA dh404 Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24044006. [PMID: 36835414 PMCID: PMC9962315 DOI: 10.3390/ijms24044006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
RTA dh404 is a novel synthetic oleanolic acid derivative that has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory properties, and exerts therapeutic effects on various cancers. Although CDDO and its derivatives have anticancer effects, the actual anticancer mechanism has not been fully explored. Therefore, in this study, glioblastoma cell lines were exposed to different concentrations of RTA dh404 (0, 2, 4, and 8 µM). Cell viability was evaluated using the PrestoBlue™ reagent assay. The role of RTA dh404 in cell cycle progression, apoptosis, and autophagy was analyzed using flow cytometry and Western blotting. The expression of cell cycle-, apoptosis-, and autophagy-related genes was detected by next-generation sequencing. RTA dh404 reduces GBM8401 and U87MG glioma cell viability. RTA dh404 treated cells had a significant increase in the percentage of apoptotic cells and caspase-3 activity. In addition, the results of the cell cycle analysis showed that RTA dh404 arrested GBM8401 and U87MG glioma cells at the G2/M phase. Autophagy was observed in RTA dh404-treated cells. Subsequently, we found that RTA dh404-induced cell cycle arrest, apoptosis, and autophagy were related to the regulation of associated genes using next-generation sequencing. Our data indicated that RTA dh404 causes G2/M cell cycle arrest and induces apoptosis and autophagy by regulating the expression of cell cycle-, apoptosis-, and autophagy-related genes in human glioblastoma cells, suggesting that RTA dh404 is a potential drug candidate for the treatment of glioblastoma.
Collapse
|
2
|
Lewis JH, Jadoul M, Block GA, Chin MP, Ferguson DA, Goldsberry A, Meyer CJ, O'Grady M, Pergola PE, Reisman SA, Wigley WC, Chertow GM. Effects of Bardoxolone Methyl on Hepatic Enzymes in Patients with Type 2 Diabetes Mellitus and Stage 4 CKD. Clin Transl Sci 2020; 14:299-309. [PMID: 32860734 PMCID: PMC7877861 DOI: 10.1111/cts.12868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
In a multinational placebo‐controlled phase III clinical trial in 2,185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, treatment with the Nrf2 activator bardoxolone methyl increased estimated glomerular filtration rate, a measure of kidney function, but also resulted in increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transferase. These increases in liver enzyme level(s) were maximal after 4 weeks of treatment and reversible, trending back toward baseline through week 48. Total bilirubin concentrations did not increase, and no cases met Hy’s Law criteria, although two subjects had ALT concentrations that exceeded 10 × the upper limit of the population reference range leading to discontinuation of treatment. Animal and cell culture experiments suggested that the increases in ALT and AST induced by bardoxolone methyl may be related to its pharmacological activity. Bardoxolone methyl significantly induced the mRNA expression of ALT and AST isoforms in cultured cells. Expression of ALT and AST isoforms in liver and kidney also positively correlated with Nrf2 status in mice. Overall, these data suggest that the increases in ALT and AST observed clinically were, at least in part, related to the pharmacological induction of aminotransferases via Nrf2 activation, rather than to any intrinsic form of hepatotoxicity.
Collapse
Affiliation(s)
- James H Lewis
- Division of Gastroenterology & Hepatology, Georgetown University Hospital, Washington, District of Columbia, USA
| | - Michel Jadoul
- Department of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | - Glenn M Chertow
- Division of Nephrology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
Reisman SA, Ferguson DA, Lee CI, Proksch JW. Omaveloxolone and TX63682 are hepatoprotective in the STAM mouse model of nonalcoholic steatohepatitis. J Biochem Mol Toxicol 2020; 34:e22526. [PMID: 32410268 PMCID: PMC9285621 DOI: 10.1002/jbt.22526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Omaveloxolone is a potent activator of Nrf2, a master transcriptional regulator of a multitude of cytoprotective functions, including antioxidative, anti-inflammatory, and mitochondrial bioenergetic effects. Some of the most potent known effects of Nrf2 involve hepatoprotective functions. The purpose of this study was to evaluate the effects of omaveloxolone and TX63682, a closely related structural analog with similar oral bioavailability, in the STAM mouse model of nonalcoholic steatohepatitis (NASH). C57Bl/6 mice received a single subcutaneous injection of streptozotocin two days after birth and were fed a high-fat diet from 4 to 9 weeks of age. Omaveloxolone and TX63682 were orally administered at doses of 1, 3, and 10 mg/kg/d from 6 to 9 weeks of age. Consistent with the beneficial effects of Nrf2 on hepatoprotection and improved lipid handling, both omaveloxolone and TX63682 decreased hepatic fat deposition, hepatocellular ballooning, inflammatory cell infiltration, and collagen deposition. Omaveloxolone and TX63682 also improved blood glucose control, as evidenced by reductions in nonfasting blood glucose and glycated hemoglobin A1C concentrations. Reductions in liver and serum triglycerides with omaveloxolone and TX63682 treatment were also observed. Both omaveloxolone and TX63682 decreased leptin and increased adiponectin in serum, which is consistent with the anti-inflammatory and antifibrotic effects observed in the liver. These results were associated with significant induction of Nrf2 target gene expression in the liver, including NAD(P)H:quinone oxidoreductase 1, sulfiredoxin 1, and ferritin heavy chain 1. Overall, these data suggest that omaveloxolone and related Nrf2 activators may be useful for the treatment of NASH.
Collapse
|
4
|
Zhang Y, Lickteig AJ, Liu J, Csanaky IL, Klaassen CD. Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice. Toxicol Appl Pharmacol 2020; 403:115170. [PMID: 32738332 DOI: 10.1016/j.taap.2020.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/16/2023]
Abstract
The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in bile acid (BA) homeostasis remains controversial. In this study, activation of Nrf2 was achieved either pharmacologically by CDDO-imidazolide (CDDO-Im) or genetically through a "gene dose-response" model consisting of Nrf2-null, wild-type (WT), Keap1-knockdown (Keap1-KD), and Keap1-hepatocyte knockout (Keap1-HKO) mice. In WT mice, CDDO-Im increased bile flow and decreased hepatic BAs, which was associated with a down-regulation of the canalicular BA efflux transporter Bsep and an increase in biliary BA excretion. In contrast, hepatic Bsep and biliary BA excretion were not altered in Keap1-KD or Keap1-HKO mice, suggesting that Nrf2 is not important for regulating Bsep or BA-dependent bile flow. In contrast, hepatic Mrp2 and Mrp3 were up-regulated by both pharmacological and genetic activations of Nrf2. Furthermore, ileal BA transporters (Asbt and Ostβ) and cholesterol transporters (Abcg5 and Abcg8) were down-regulated by both pharmacological and genetic activations of Nrf2, suggesting a role of Nrf2 in intestinal absorption of BAs and cholesterol. In Nrf2-null mice, CDDO-Im down-regulated hepatic BA uptake transporters (Ntcp, Oatp1a1, and Oatp1b2), leading to a 39-fold increase of serum BAs. To conclude, the present study demonstrates that activation of Nrf2 in mice up-regulates Mrp2 and Mrp3 in the liver and down-regulates BA and cholesterol transporters in the intestine.
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
5
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
6
|
Xu D, Chen L, Chen X, Wen Y, Yu C, Yao J, Wu H, Wang X, Xia Q, Kong X. The triterpenoid CDDO-imidazolide ameliorates mouse liver ischemia-reperfusion injury through activating the Nrf2/HO-1 pathway enhanced autophagy. Cell Death Dis 2017; 8:e2983. [PMID: 28796242 PMCID: PMC5596572 DOI: 10.1038/cddis.2017.386] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidants has been implicated to have protective roles in ischemia-reperfusion (I/R) injury in many animal models. However, the in vivo effects of CDDO-imidazole (CDDO-Im) (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole), a Nrf2 activator, in hepatic I/R injury is lacking and its exact molecular mechanisms are still not very clear. The goals of this study were to determine whether CDDO-Im can prevent liver injury induced by I/R in the mouse, and to elucidate the molecular target of drug action. Mice were randomly equally divided into two groups and administered intraperitoneally with either DMSO control or CDDO-Im (2 mg/kg) 3 h before subjected to 90-min hepatic 70% ischemia followed by reperfusion. Subsequently, the Liver and blood samples of these mice were collected to evaluate liver injury. CDDO-Im pretreatment markedly improve hepatic I/R injury by attenuating hepatic necrosis and apoptosis, reducing reactive oxygen species (ROS) levels and inflammatory responses, and ameliorating mitochondrial dysfunction. Mechanistically, by using Nrf2 Knockout mice and hemeoxygenase 1 (HO-1) inhibitor, we found that these CDDO-Im protection effects are attributed to enhanced autophagy, which is mediated by activating Nrf2/HO-1 pathway. By accelerating autophagy and clearance of damaged mitochondria, CDDO-Im reduced the mtDNA release and ROS overproduction, and in turn decreased damage-associated molecular patterns induced inflammatory responses and the following secondary liver injury. These results indicate that by enhancing autophagy, CDDO-Im-mediated activation of Nrf2/HO-1 signaling could be a novel therapeutic strategy to minimize the adverse effects of hepatic I/R injury.
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jufang Yao
- Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Mathis BJ, Cui T. CDDO and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:291-314. [PMID: 27771930 DOI: 10.1007/978-3-319-41342-6_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.
Collapse
Affiliation(s)
- Bryan J Mathis
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Rd., Columbia, South Carolina, 29209, USA.
| |
Collapse
|
8
|
Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88:253-267. [PMID: 26281945 PMCID: PMC4809057 DOI: 10.1016/j.freeradbiomed.2015.07.147] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The brain is very sensitive to changes in redox status; thus maintaining redox homeostasis in the brain is critical for the prevention of accumulating oxidative damage. Aging is the primary risk factor for developing neurodegenerative diseases. In addition to age, genetic and environmental risk factors have also been associated with disease development. The primary reactive insults associated with the aging process are a result of oxidative stress (OS) and nitrosative stress (NS). Markers of increased oxidative stress, protein and DNA modification, inflammation, and dysfunctional proteostasis have all been implicated in contributing to the progression of neurodegeneration. The ability of the cell to combat OS/NS and maintain a clearance mechanism for misfolded aggregating proteins determines whether or not it will survive. A critical pathway in this regard is the Nrf2 (nuclear factor erythroid 2-related factor 2)- antioxidant response element (ARE) pathway. Nrf2 activation has been shown to mitigate a number of pathologic mechanisms associated with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. This review will focus on the role of Nrf2 in these diseases and the potential for Nrf2 activation to attenuate disease progression.
Collapse
Affiliation(s)
- Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Reisman SA, Goldsberry AR, Lee CYI, O'Grady ML, Proksch JW, Ward KW, Meyer CJ. Topical application of RTA 408 lotion activates Nrf2 in human skin and is well-tolerated by healthy human volunteers. BMC DERMATOLOGY 2015; 15:10. [PMID: 26170027 PMCID: PMC4501113 DOI: 10.1186/s12895-015-0029-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Topical application of the synthetic triterpenoid RTA 408 to rodents elicits a potent dermal cytoprotective phenotype through activation of the transcription factor Nrf2. Therefore, studies were conducted to investigate if such cytoprotective properties translate to human dermal cells, and a topical lotion formulation was developed and evaluated clinically. METHODS In vitro, RTA 408 (3-1000 nM) was incubated with primary human keratinocytes for 16 h. Ex vivo, RTA 408 (0.03, 0.3, or 3 %) was applied to healthy human skin explants twice daily for 3 days. A Phase 1 healthy volunteer clinical study with RTA 408 Lotion (NCT02029716) consisted of 3 sequential parts. In Part A, RTA 408 Lotion (0.5 %, 1 %, and 3 %) and lotion vehicle were applied to individual 4-cm(2) sites twice daily for 14 days. In Parts B and C, separate groups of subjects had 3 % RTA 408 Lotion applied twice daily to a 100-cm(2) site for 14 days or a 500-cm(2) site for 28 days. RESULTS RTA 408 was well-tolerated in both in vitro and ex vivo settings up to the highest concentrations tested. Further, RTA 408 significantly and dose-dependently induced a variety of Nrf2 target genes. Clinically, RTA 408 Lotion was also well-tolerated up to the highest concentration, largest surface area, and longest duration tested. Moreover, significant increases in expression of the prototypical Nrf2 target gene NQO1 were observed in skin biopsies, suggesting robust activation of the pharmacological target. CONCLUSIONS Overall, these data suggest RTA 408 Lotion is well-tolerated, activates Nrf2 in human skin, and appears suitable for continued clinical development.
Collapse
Affiliation(s)
- Scott A Reisman
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Angela R Goldsberry
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Chun-Yue I Lee
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Megan L O'Grady
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Joel W Proksch
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Keith W Ward
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| | - Colin J Meyer
- Reata Pharmaceuticals, Inc., 2801 Gateway Dr. Ste 150, Irving, TX, 75063, USA.
| |
Collapse
|
10
|
Aminzadeh MA, Reisman SA, Vaziri ND, Khazaeli M, Yuan J, Meyer CJ. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica 2013; 44:570-8. [PMID: 24195589 PMCID: PMC4046874 DOI: 10.3109/00498254.2013.852705] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic oxidative stress and inflammation are major mediators of chronic kidney disease (CKD) and result in impaired activation of the cytoprotective transcription factor Nrf2. Given the role of oxidative stress and inflammation in CKD pathogenesis, strategies aimed at restoring Nrf2 activity may attenuate CKD progression. The present study investigated whether the synthetic triterpenoid RTA dh404 (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-9,11-dihydro-trifluoroethyl amide or CDDO-dhTFEA) would afford renal protection in a 5/6 nephrectomized rat model of CKD. RTA dh404 (2 mg/kg/day) was orally administered once daily for 12 weeks after 5/6 nephrectomy surgery. The remnant kidneys from the vehicle-treated CKD rats showed activation of nuclear factor kappaB (NF-κB), upregulation of NAD(P)H oxidase, glomerulosclerosis, interstitial fibrosis and inflammation, as well as marked reductions in Nrf2 and its target gene products (i.e. catalase, heme oxygenase-1, thioredoxin 1, thioredoxin reductase 1 and peroxiredoxin 1). The functional and structural deficits in the kidney were associated with increased (∼30%) mean arterial pressure (MAP). Treatment with RTA dh404 restored MAP, increased Nrf2 and expression of its target genes, attenuated activation of NF-κB and transforming growth factor-β pathways, and reduced glomerulosclerosis, interstitial fibrosis and inflammation in the CKD rats. Thus, chronic treatment with RTA dh404 was effective in restoring Nrf2 activity and slowing CKD progression in rats following 5/6 nephrectomy.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, Schools of Medicine and Biological Science, University of California-Irvine , Orange, CA , USA , and
| | | | | | | | | | | |
Collapse
|