1
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S. Signal Detection of Potential Hepatotoxic Drugs: Case-Control Study Using Both a Spontaneous Reporting System and Electronic Medical Records. Biol Pharm Bull 2021; 44:1514-1523. [PMID: 34602560 DOI: 10.1248/bpb.b21-00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug event. Spontaneous reporting systems such as the Japanese Adverse Event Report Database (JADER) have been used to evaluate the association between drugs and adverse drug events. However, the association of drugs with adverse drug events may be overestimated due to reporting biases. Therefore, it is important to objectively evaluate the association using liver function test values. The aim of the present study was to predict potential hepatotoxic drugs using real-world data including electronic medical records and the JADER database. A total of 70009 (2779 with DILI and 67230 without DILI) and 438515 (10235 with DILI and 428280 without DILI) Japanese adult patients were extracted from electronic medical records and the JADER database, respectively. Drugs with ≥100 DILI patients in both of the two databases were regarded as suspected drugs for DILI. We used multivariate logistic regression to evaluate the association between the suspected drugs and increased risk of DILI. Among the suspected drugs, broad-spectrum antibiotics such as meropenem, tazobactam/piperacillin and ceftriaxone were significantly associated with an increased risk of DILI, and meropenem had a greater risk of DILI in both of the two databases. Additionally, there were significant associations of mosapride and L-carbocisteine with increased risk of DILI. In addition to well-known associations between antibiotic drugs and DILI, mosapride and L-carbocisteine were found to be new potential signals of drugs causing hepatotoxicity. This study indicates potential hepatotoxic drugs that require further causality assessment.
Collapse
Affiliation(s)
- Hayato Akimoto
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Takuya Nagashima
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Kimino Minagawa
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine
| | - Takashi Hayakawa
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine
| | - Satoshi Asai
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine
| |
Collapse
|
3
|
McGill MR, Jaeschke H. Biomarkers of mitotoxicity after acute liver injury: Further insights into the interpretation of glutamate dehydrogenase. J Clin Transl Res 2021; 7:61-65. [PMID: 34027202 PMCID: PMC8132186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) is a popular analgesic, but overdose causes acute liver injury and sometimes death. Decades of research have revealed that mitochondrial damage is central in the mechanisms of toxicity in rodents, but we know much less about the role of mitochondria in humans. Due to the challenge of procuring liver tissue from APAP overdose patients, non-invasive mechanistic biomarkers are necessary to translate the mechanisms of APAP hepatotoxicity from rodents to patients. It was recently proposed that the mitochondrial matrix enzyme glutamate dehydrogenase (GLDH) can be measured in circulation as a biomarker of mitochondrial damage. Early observations revealed that damaged mitochondria release their contents into the cytosol. It follows that those mitochondrial molecules become freely detectable in blood after cell death. On the other hand, intact mitochondria would not release their matrix contents and can be removed from serum or plasma by high-speed centrifugation. However, a recent study cast doubt on the interpretation of GLDH as a mitotoxicity biomarker by demonstrating that neither high-speed centrifugation nor repeated freezing and thawing to lyse mitochondria alter GLDH activity in serum from mice with drug-induced liver injury. AIM Here, we briefly review the evidence for mitochondrial damage in APAP hepatotoxicity and demonstrate that removal of intact mitochondria by centrifugation does not alter measured GLDH activity simply because GLDH within the mitochondrial matrix is not accessible for measurement. In addition, we show that freezing and thawing is insufficient for complete lysis of mitochondria. RELEVANCE FOR PATIENTS Our literature review and data support the interpretation that circulating GLDH is a biomarker of mitochondrial damage. Such mechanistic biomarkers are important to translate preclinical research to patients.
Collapse
Affiliation(s)
- Mitchell R. McGill
- 1Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham St, Little Rock, AR, 72205 USA,2Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205 USA,
Corresponding author: Mitchell R. McGill Department of Environmental and Occupational Health & Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA Tel: +1 501-526-6696
| | - Hartmut Jaeschke
- 3Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160 USA
| |
Collapse
|
4
|
Church RJ, Schomaker SJ, Eaddy JS, Boucher GG, Kreeger JM, Aubrecht J, Watkins PB. Glutamate dehydrogenase as a biomarker for mitotoxicity; insights from furosemide hepatotoxicity in the mouse. PLoS One 2020; 15:e0240562. [PMID: 33035276 PMCID: PMC7546462 DOI: 10.1371/journal.pone.0240562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
Glutamate dehydrogenase (GLDH) is a liver-specific biomarker of hepatocellular damage currently undergoing qualification as a drug development tool. Since GLDH is located within the mitochondrial matrix, it has been hypothesized that it might also be useful in assessing mitotoxicity as an initiating event during drug-induced liver injury. According to this hypothesis, hepatocyte death that does not involve primary mitochondrial injury would result in release of intact mitochondria into circulation that could be removed by high speed centrifugation and result in lower GLDH activity measured in spun serum vs un-spun serum. A single prior study in mice has provided some support for this hypothesis. We sought to repeat and extend the findings of this study. Accordingly, mice were treated with the known mitochondrial toxicant, acetaminophen (APAP), or with furosemide (FS), a toxicant believed to cause hepatocyte death through mechanisms not involving mitotoxicity as initiating event. We measured GLDH levels in fresh plasma before and after high speed centrifugation to remove intact mitochondria. We found that both APAP and FS treatments caused substantial hepatocellular necrosis that correlated with plasma alanine aminotransferase (ALT) and GLDH elevations. The plasma GLDH activity in both the APAP- and FS- treated mice was not affected by high-speed centrifugation. Interestingly, the ratio of GLDH:ALT was 5-fold lower during FS compared to APAP hepatotoxicity. Electron microscopy confirmed that both APAP- and FS-treatments had resulted in mitochondrial injury. Mitochondria within vesicles were only observed in the FS-treated mice raising the possibility that mitophagy might account for reduced release of GLDH in the FS-treated mice. Although our results show that plasma GLDH is not clinically useful for evaluating mitotoxicity, the GLDH:ALT ratio as a measure of mitophagy needs to be further studied.
Collapse
Affiliation(s)
- Rachel J. Church
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | | | - J. Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | - Jiri Aubrecht
- Pfizer Inc., Groton, Connecticut, United States of America
| | - Paul B. Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
5
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
6
|
Ewing LE, McGill MR, Yee EU, Quick CM, Skinner CM, Kennon-McGill S, Clemens M, Vazquez JH, McCullough SS, Williams DK, Kutanzi KR, Walker LA, ElSohly MA, James LP, Gurley BJ, Koturbash I. Paradoxical Patterns of Sinusoidal Obstruction Syndrome-Like Liver Injury in Aged Female CD-1 Mice Triggered by Cannabidiol-Rich Cannabis Extract and Acetaminophen Co-Administration. Molecules 2019; 24:molecules24122256. [PMID: 31212965 PMCID: PMC6630875 DOI: 10.3390/molecules24122256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to investigate the potential for a cannabidiol-rich cannabis extract (CRCE) to interact with the most common over-the-counter drug and the major known cause of drug-induced liver injury–acetaminophen (APAP)–in aged female CD-1 mice. Gavaging mice with 116 mg/kg of cannabidiol (CBD) [mouse equivalent dose (MED) of 10 mg/kg of CBD] in CRCE delivered with sesame oil for three consecutive days followed by intraperitoneally (i.p.) acetaminophen (APAP) administration (400 mg/kg) on day 4 resulted in overt toxicity with 37.5% mortality. No mortality was observed in mice treated with 290 mg/kg of CBD+APAP (MED of 25 mg/kg of CBD) or APAP alone. Following CRCE/APAP co-administration, microscopic examination revealed a sinusoidal obstruction syndrome-like liver injury–the severity of which correlated with the degree of alterations in physiological and clinical biochemistry end points. Mechanistically, glutathione depletion and oxidative stress were observed between the APAP-only and co-administration groups, but co-administration resulted in much greater activation of c-Jun N-terminal kinase (JNK). Strikingly, these effects were not observed in mice gavaged with 290 mg/kg CBD in CRCE followed by APAP administration. These findings highlight the potential for CBD/drug interactions, and reveal an interesting paradoxical effect of CBD/APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Laura E Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Charles M Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Melissa Clemens
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Joel H Vazquez
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Sandra S McCullough
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - D Keith Williams
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Larry A Walker
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA.
- ElSohly Laboratories, Inc. (ELI), Oxford, MS 38677, USA.
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA.
- ElSohly Laboratories, Inc. (ELI), Oxford, MS 38677, USA.
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Laura P James
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Bill J Gurley
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Chao X, Wang S, Zhao K, Li Y, Williams JA, Li T, Chavan H, Krishnamurthy P, He XC, Li L, Ballabio A, Ni HM, Ding WX. Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice. Gastroenterology 2018; 155:865-879.e12. [PMID: 29782848 PMCID: PMC6120772 DOI: 10.1053/j.gastro.2018.05.027] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. METHODS We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. RESULTS Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. CONCLUSIONS We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Katrina Zhao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy,Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA,Correspondence to: Wen-Xing Ding, Ph.D., Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Blvd., Kansas City, Kansas 66160, Phone: 913-588-9813; Fax: 913-588-7501, ; Hong-Min Ni, MD., Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018 3901 Rainbow Blvd., Kansas City, Kansas 66160, Phone: 913-588-9813; Fax: 913-588-7501,
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
9
|
Win S, Than TA, Zhang J, Oo C, Min RWM, Kaplowitz N. New insights into the role and mechanism of c-Jun-N-terminal kinase signaling in the pathobiology of liver diseases. Hepatology 2018; 67:2013-2024. [PMID: 29194686 PMCID: PMC5906137 DOI: 10.1002/hep.29689] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
The c-Jun-N-terminal-kinase (JNK) family is highly conserved across species such as Drosophila, C. elegans, zebrafish and mammals, and plays a central role in hepatic physiologic and pathophysiologic responses. These responses range from cell death to cell proliferation and carcinogenesis, as well as metabolism and survival, depending on the specific context and duration of activation of the JNK signaling pathway. Recently, several investigators identified the key molecules in the JNK activation loop which include apoptosis signal-regulating kinase (ASK1) and SH3-domain binding protein 5 (Sab) and their involvement in acute or chronic liver disease models. Thus, regulating JNK activation through modulating the JNK activation loop may represent an important new strategy in the prevention and treatment of acute and chronic liver diseases. In this review, we will discuss the molecular pathophysiology of the JNK activation loop and its role in the pathogenesis of liver diseases. (Hepatology 2018;67:2013-2024).
Collapse
Affiliation(s)
| | | | | | | | | | - Neil Kaplowitz
- To whom correspondence should be addressed: USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 101, Los Angeles, CA 90089-9121, Tel.: 323-442-5576; Fax: 323-442-3243;
| |
Collapse
|
10
|
Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM, Nawabi A, Komatsu M, Huang H, Ding WX. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget 2017; 7:17681-98. [PMID: 26769846 PMCID: PMC4951242 DOI: 10.18632/oncotarget.6893] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol exposure increased hepatic receptor-interacting protein kinase (RIP) 3 expression and necroptosis in the liver but its mechanisms are unclear. In the present study, we demonstrated that chronic alcohol feeding plus binge (Gao-binge) increased RIP3 but not RIP1 protein levels in mouse livers. RIP3 knockout mice had decreased serum alanine amino transferase activity and hepatic steatosis but had no effect on hepatic neutrophil infiltration compared with wild type mice after Gao-binge alcohol treatment. The hepatic mRNA levels of RIP3 did not change between Gao-binge and control mice, suggesting that alcohol-induced hepatic RIP3 proteins are regulated at the posttranslational level. We found that Gao-binge treatment decreased the levels of proteasome subunit alpha type-2 (PSMA2) and proteasome 26S subunit, ATPase 1 (PSMC1) and impaired hepatic proteasome function. Pharmacological or genetic inhibition of proteasome resulted in the accumulation of RIP3 in mouse livers. More importantly, human alcoholics had decreased expression of PSMA2 and PSMC1 but increased protein levels of RIP3 compared with healthy human livers. Moreover, pharmacological inhibition of RIP1 decreased Gao-binge-induced hepatic inflammation, neutrophil infiltration and NF-κB subunit (p65) nuclear translocation but failed to protect against steatosis and liver injury induced by Gao-binge alcohol. In conclusion, results from this study suggest that impaired hepatic proteasome function by alcohol exposure may contribute to hepatic accumulation of RIP3 resulting in necroptosis and steatosis while RIP1 kinase activity is important for alcohol-induced inflammation.
Collapse
Affiliation(s)
- Shaogui Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C Kumer
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M Schmitt
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Atta Nawabi
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Masaaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 2017; 3:157-169. [PMID: 28670625 PMCID: PMC5489132 DOI: 10.18053/jctres.03.2017s1.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its translocation to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for significant clinical use in the near future.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Woolbright BL, Jaeschke H. Mechanisms of Acetaminophen-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:55-76. [DOI: 10.1007/978-3-319-53774-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
14
|
Du K, Xie Y, McGill MR, Jaeschke H. Pathophysiological significance of c-jun N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 2015; 11:1769-79. [PMID: 26190663 DOI: 10.1517/17425255.2015.1071353] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US. Although substantial progress regarding the mechanisms of APAP hepatotoxicity has been made in the past several decades, therapeutic options are still limited and novel treatments are clearly needed. c-jun N-terminal Kinase (JNK) has emerged as a promising therapeutic target in recent years. AREAS COVERED Early studies established the critical role of JNK activation and mitochondrial translocation in APAP hepatotoxicity. However, this concept has also been challenged. Initial studies failed to reproduce the protection of JNK deficiency in APAP toxicity and concerns over off-target effects of JNK inhibitors and even in knock-out mice are increasing. Interestingly, recent studies have even shown that liver injury can be altered with or without effects on JNK activation. The current review addresses these discrepancies and tries to explain or reconcile some of the conflicting results. EXPERT OPINION JNK is a potential therapeutic target for APAP poisoning. However, controversies still exist regarding its actual role in APAP hepatotoxicity. Future studies are warranted for more in-depth testing of specific inhibitors in well-defined preclinical models and human hepatocytes before JNK can be considered a relevant therapeutic target for APAP poisoning.
Collapse
Affiliation(s)
- Kuo Du
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Yuchao Xie
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Mitchell R McGill
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Hartmut Jaeschke
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| |
Collapse
|