1
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Safety Assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12–15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate. Int J Toxicol 2016. [DOI: 10.1177/1091581803022s303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent—miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents—miscellaneous (Capryloyl, 0.1% to 1%; C12–15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents—miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD50 in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a “baby” aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.
Collapse
|
3
|
Rouhou MC, Charest-Tardif G, Haddad S. In vivo effects of naproxen, salicylic acid, and valproic acid on the pharmacokinetics of trichloroethylene and metabolites in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:671-684. [PMID: 26039745 DOI: 10.1080/15287394.2015.1020977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It was recently demonstrated that some drugs modulate in vitro metabolism of trichloroethylene (TCE) in humans and rats. The objective was to assess in vivo interactions between TCE and three drugs: naproxen (NA), valproic acid (VA), and salicylic acid (SA). Animals were exposed to TCE by inhalation (50 ppm for 6 h) and administered a bolus dose of drug by gavage, equivalent to 10-fold greater than the recommended daily dose. Samples of blood, urine, and collected tissues were analyzed by headspace gas chromatography coupled to an electron capture detector for TCE and metabolites (trichloroethanol [TCOH] and trichloroacetate [TCA]) levels. Coexposure to NA and TCE significantly increased (up to 50%) total and free TCOH (TCOHtotal and TCOHfree, respectively) in blood. This modulation may be explained by an inhibition of glucuronidation. VA significantly elevated TCE levels in blood (up to 50%) with a marked effect on TCOHtotal excretion in urine but not in blood. In contrast, SA produced an increase in TCOHtotal levels in blood at 30, 60, and 90 min and urine after coexposure. Data confirm in vitro observations that NA, VA, and SA affect in vivo TCE kinetics. Future efforts need to be directed to evaluate whether populations chronically medicated with the considered drugs display greater health risks related to TCE exposure.
Collapse
Affiliation(s)
- Mouna Cheikh Rouhou
- a Sciences Biologiques , Université du Québec à Montréal , Montréal , Quebec , Canada
| | | | | |
Collapse
|
5
|
Kehinde EO, Eldeen AS, Ayesha A, Anim JT, Memon A, Al-Sulaiman SM. Effect of castration on acetyl salicylic acid metabolism in rabbits. Urology 2003; 61:651-5. [PMID: 12639678 DOI: 10.1016/s0090-4295(02)02279-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The biotransformation of acetyl salicylic acid (ASA) differs within species, and gender differences have been documented and attributed to the effect of sex hormones. Castration remains a standard therapy for men with advanced prostate cancer. We studied the effect of castration on the metabolism of ASA in rabbits to find out whether the metabolism of ASA is adversely affected after castration. METHODS ASA in doses of 12.5, 25, and 50 mg/kg body weight was given intravenously to male and female prepubertal and adult rabbits, castrated adult male rabbits, and castrated male rabbits given testosterone (3 animals per group). Blood samples were collected at 0, 10, 30, 60, 120, and 180 minutes. The high-performance liquid chromatography method was used for the quantitation of salicylic acid (SA) in serum. The percentage of SA not metabolized was determined by comparing the serum level at 10 and 180 minutes for each group. RESULTS At a dose of 50 mg/kg in the adult rabbits, the mean +/- SD of SA in serum at 10 and 180 minutes was 146.54 +/- 29.54 microg/mL and 19.12 +/- 5.93 microg/mL for males, 158.25 +/- 6.70 microg/mL and 33.24 +/- 2.78 microg/mL for females, 229.72 +/- 47.85 microg/mL and 44.33 +/- 5.64 microg/mL for castrated male rabbits, and 170.88 +/- 12.03 microg/mL and 68.1 +/- 37.54 microg/mL for castrated male rabbits given testosterone, respectively. Also, at 180 minutes, the percentage of SA not metabolized in adult male rabbits was 12.82% +/- 1.65% compared with 21.04% +/- 2.14% (P <0.01) in adult females, 19.53% +/- 1.73% (P <0.01) in castrated adult male rabbits, and 38.95% +/- 19.48% (P <0.001) in castrated male rabbits given testosterone. At all doses of ASA, the serum SA concentration in male and female prepubertal rabbits was not significantly different for each time point. CONCLUSIONS These results indicate that male rabbits are able to metabolize ASA faster than are females. After castration, this ability is significantly decreased. If these experimental results are confirmed in humans, men who are undergoing hormonal manipulation for advanced prostate cancer and who require high-dose ASA, such as in the treatment of stroke or rheumatoid arthritis or as an antioxidant, may need lower doses to reduce the possible toxic effects of ASA.
Collapse
Affiliation(s)
- E O Kehinde
- Department of Surgery, Kuwait University Faculty of Medicine, Sufat, Kuwait
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Gender differences in pharmacokinetics and pharmacodynamics have long been recognized in animals. In humans, however, little attention has been paid to this field despite at least theoretical reasons to believe that gender may be an important variable in the processes of absorption, distribution, metabolism, and excretion. Gastric acid secretion, gastrointestinal blood flow, proportions of muscular and adipose tissue, amount of drug binding proteins, gender-specific cytochrome P450 isozymes, physiologic and hormonal changes during the menstrual cycle, and renal blood flow are several factors that may contribute to sex-related differences in pharmacokinetics. Clinical investigations have documented greater absorption and subsequent incorporation of iron into erythrocytes, and higher bioavailability of ethanol in females. Women have been shown to have a slower metabolism of mephobarbital and propranolol but an increased biotransformation of methylprednisolone, all three of which are metabolized by enzymes of the cytochrome P450 system. Lastly, the renal excretion of amantadine was inhibited significantly by quinidine and quinine in men but not in women. While gender-specific pharmacodynamic data are meager, evidence also supports the existence of sex-related differences. Women appear to be more prone to develop torsades de points from drugs such as quinidine and procainamide than men. A dimorphism in insulin sensitivity has been demonstrated with males having an enhanced response compared to females. Pharmacokinetic and pharmacodynamic sex-related differences exist and are complex. Future research efforts should be designed to provide more gender-specific information on drug disposition and clinical effect.
Collapse
Affiliation(s)
- C V Fletcher
- Pediatric AIDS Pharmacology Laboratory, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
7
|
Abstract
Glucuronidation is a major metabolic pathway for a large number of drugs in humans. Conjugation of drugs and other chemicals with glucuronic acid is catalyzed by the multigene UDP-glucuronosyltransferase family. It is believed that a number (unspecified at present) of glucuronosyltransferase isozymes, which probably differ in terms of substrate specificity and regulation, contribute to drug glucuronidation. Factors known to influence the pharmacokinetics of glucuronidated drugs in man, presumably via an effect on specific glucuronosyltransferases, include age (especially the neonatal period), cigarette smoking, diet, certain disease states, coadministered drugs, ethnicity, genetics and hormonal effects.
Collapse
Affiliation(s)
- J O Miners
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, South Australia
| | | |
Collapse
|